scholarly journals Shock-wave model of the earthquake and Poincaré quantum theorem give an insight into the aftershock physics.

2018 ◽  
Vol 62 ◽  
pp. 03006
Author(s):  
Vladimir Kuznetsov

A fundamentally new model of aftershocks evident from the shock-wave model of the earthquake and Poincaré Recurrence Theorem [H. Poincare, Acta Mathematica 13, 1 (1890)] is proposed here. The authors (Recurrences in an isolated quantum many-body system, Science 2018) argue that the theorem should be formulated as “Complex systems return almost exactly into their initial state”. For the first time, this recurrence theorem has been demonstrated with complex quantum multi-particle systems. Our shock-wave model of an earthquake proceeds from the quantum entanglement of protons in hydrogen bonds of lithosphere material. Clearly aftershocks are quantum phenomena which mechanism follows the recurrence theorem.

AIAA Journal ◽  
1964 ◽  
Vol 2 (7) ◽  
pp. 1285-1296 ◽  
Author(s):  
L. CROCCO ◽  
W. A. SIRIGNANO

1985 ◽  
Vol 299 ◽  
pp. 167 ◽  
Author(s):  
E. Bertschinger ◽  
R. A. Chevalier

Science ◽  
1998 ◽  
Vol 280 (5360) ◽  
pp. 62-67 ◽  
Author(s):  
H. C. Connolly Jr.

1968 ◽  
Vol 183 (1) ◽  
pp. 31-50 ◽  
Author(s):  
F. G. Hammitt

The possibility of the applicability of spherical symmetry to cavitation and highly sub-cooled bubble collapse is considered in the light of present photographic and theoretical evidence, and it is concluded that such symmetry is unlikely in situations of engineering importance. Rather an asymmetry which generates a high-velocity microjet is a more likely mode of collapse. The present evidence relative to the importance of microjet impact as opposed to the classical spherical shock-wave model for cavitation damage is examined and some new experimental evidence presented. It is concluded that the microjet model is most likely of predominant importance in cavitation damage. Some estimates for the pertinent parameters of such microjets are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Shaohua Dong ◽  
Yinuo Chen ◽  
Xuan Sun ◽  
Hang Zhang

As developments in natural gas pipelines increasingly incorporate higher grades of steel, larger diameters, and higher pressures, the consequences of an accident caused by leakage, explosion, or ignition become progressively more severe. Currently, major technical obstacles include the quantification of the impact of an explosion shock wave of a high-strength, large-diameter natural gas pipeline, and the selection of a reasonable shock wave overpressure model appropriate to the operating conditions. In this paper, six models of shock wave overpressure theories, namely, the TNT equivalent method, the TNO method, the multienergy method, the British Gas method, the Shell method, and the Lee formula, were compared and analyzed to determine their applicability. A shock wave model adapted to the characteristics of a full-scale test was proposed, and the model verification of a full-scale blasting test was conducted on pipelines with diameters of 1422 mm and 1219 mm, respectively. Subsequent results indicated that the modifications to the TNT equivalent and the test parameters correlated with changes in the suitability of the model. Henrych’s formula calculation model of the British Gas method was found to correspond strongly with the measured value, in which the absolute value of the relative error was less than 30% and the absolute error within the range of 78 m to 800 m was no more than 0.05 MPa. Thus, the Henrych formula was adopted as the primary model formula for the shock wave overpressure calculations in this study. To further correct the error of the model, the trend between the curve obtained by the Henrych formula and the fitting curve of the measured value was compared and analyzed. The positive and negative compensations of the shaded area before and after the intersection point were carried out, and the new error correction overpressure model formula was obtained by fitting, with the error controlled within 15%.


1988 ◽  
Vol 141 ◽  
Author(s):  
Paul A. Taylor ◽  
Brian W. Dodson

AbstractMolecular dynamics shock wave simulations have been performed, which for the first time include a realistic many-body description of the atomic interactions. The structural instabilities observed in the shock-front structure are dramatically influenced by the many-body effects of these atomic interactions.


Sign in / Sign up

Export Citation Format

Share Document