scholarly journals Studying the influence of moving vehicle on air pollutant dispersion through environmental chamber

2019 ◽  
Vol 111 ◽  
pp. 02022
Author(s):  
T.T. Chow ◽  
Wenjing Zhang ◽  
Jinliang Wang

The risk of air pollutants like particulate matters on human beings has been widely reported. One main concern is its health impact on people through direct emission or resuspension. In China with the quick growth in private car ownership, the worries about the influence of the moving vehicles on particulate dispersion is growing. In this study, the influence of a moving object on wick formation and particulate dispersion was investigated. An advanced numerical model was developed, in which the unsteady Eulerian RANS model was applied for simulating the airflow, the modified drift-flux model for modelling particulate dispersion, and the dynamic mesh model for mimicking the moving vehicle. The results show that the vehicular movement induces three noticeable vortexes around the moving body, and the faster the running speed, the stronger the secondary airflow generated.

2012 ◽  
Vol 610-613 ◽  
pp. 1895-1900 ◽  
Author(s):  
Shu Jiang Miao ◽  
Da Fang Fu

The tunnel module of a rather simple Lagrangian model GRAL (Grazer Langrange model) has been chosen to study air pollutant dispersion around tunnel portals in Nanjing inner ring. Two points have been made to popularize GRAL3.5TM (the tunnel module of a Lagrangian model GRAL; the update was in May 2003) and assure it more suitable for the actual situations in Nanjing. One is to derive a piecewise function of the intermediate parameter ‘stiffness’. Another is to take Romberg NOx-NO2 scheme into account. After these 2 works on GRAL3.5TM, NO2 dispersion from portals of all the 6 tunnels in Nanjing inner ring has been simulated. The importance of limiting urban traffic volume to control air quality around tunnel portals and roadways has been emphasized.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1603
Author(s):  
Ana R. Gamarra ◽  
Yolanda Lechón ◽  
Marta G. Vivanco ◽  
Mark Richard Theobald ◽  
Carmen Lago ◽  
...  

This paper assesses the health impact, in terms of the reduction of premature deaths associated with changes in air pollutant exposure, resulting from double-aim strategies for reducing emissions of greenhouse gases and air pollutants from the transport sector for the year 2030 in Spain. The impact on air quality of selected measures for reducing emissions from the transport sector (increased penetration of biofuel and electric car use) was assessed by air quality modeling. The estimation of population exposure to NO2, particulate matter (PM) and O3 allows for estimation of associated mortality and external costs in comparison with the baseline scenario with no measures. The results show that the penetration of the electric vehicle provided the largest benefits, even when the emissions due to the additional electricity demand were considered.


2021 ◽  
Vol 893 (1) ◽  
pp. 012044
Author(s):  
H Salsabila ◽  
A Turyanti ◽  
DE Nuryanto

Abstract Bandung is one of big cities in Indonesia with high activities on industrial and transportation that will increase the air pollutant emission and causes adversely affect the public health. Based on that matter, monitoring of air pollutant concentration is urgently needed to predict the direction of pollutant dispersion and to analyze which locations are vulnerable to maximum exposure of the pollutant. Field monitoring of air pollutant concentration needs much time and high cost, but modeling could help for this. One of the models that can be used to predict the direction of pollutant distribution is the Weather Research Forecasting/Chemistry (WRF-Chem) model, which is a model that combines meteorological models with air quality models. The output of the WRF-Chem running model on July and October 2018, which has been analyzed visually, showed the dispersion pattern of PM10 and PM2.5 is spread mostly to the west, northwest, and north following the wind direction. According to the output of the WRF-Chem model, Bandung Kulon is the most polluted subdistrict by PM10 and PM2.5 with an exposure frequency of 22 hours (PM10), 24 hours (PM2.5) on July 2018 and 19 Hours (PM10), 14 hours (PM2.5) on October 2018. The correlation value for meteorological parameters is quite high in July 2018 (R = 0.9 for wind speed and R = 0.82 for air temperature). So based on the meteorological factor, WRF-Chem model can be used to predict the direction of pollutant distribution.


Sign in / Sign up

Export Citation Format

Share Document