scholarly journals Estimation of the spatial distribution of maximum PM10 and PM2.5 concentration in Bandung City and surrounding countries using WRF-Chem Model (case study in July and October 2018)

2021 ◽  
Vol 893 (1) ◽  
pp. 012044
Author(s):  
H Salsabila ◽  
A Turyanti ◽  
DE Nuryanto

Abstract Bandung is one of big cities in Indonesia with high activities on industrial and transportation that will increase the air pollutant emission and causes adversely affect the public health. Based on that matter, monitoring of air pollutant concentration is urgently needed to predict the direction of pollutant dispersion and to analyze which locations are vulnerable to maximum exposure of the pollutant. Field monitoring of air pollutant concentration needs much time and high cost, but modeling could help for this. One of the models that can be used to predict the direction of pollutant distribution is the Weather Research Forecasting/Chemistry (WRF-Chem) model, which is a model that combines meteorological models with air quality models. The output of the WRF-Chem running model on July and October 2018, which has been analyzed visually, showed the dispersion pattern of PM10 and PM2.5 is spread mostly to the west, northwest, and north following the wind direction. According to the output of the WRF-Chem model, Bandung Kulon is the most polluted subdistrict by PM10 and PM2.5 with an exposure frequency of 22 hours (PM10), 24 hours (PM2.5) on July 2018 and 19 Hours (PM10), 14 hours (PM2.5) on October 2018. The correlation value for meteorological parameters is quite high in July 2018 (R = 0.9 for wind speed and R = 0.82 for air temperature). So based on the meteorological factor, WRF-Chem model can be used to predict the direction of pollutant distribution.

2012 ◽  
Vol 610-613 ◽  
pp. 1895-1900 ◽  
Author(s):  
Shu Jiang Miao ◽  
Da Fang Fu

The tunnel module of a rather simple Lagrangian model GRAL (Grazer Langrange model) has been chosen to study air pollutant dispersion around tunnel portals in Nanjing inner ring. Two points have been made to popularize GRAL3.5TM (the tunnel module of a Lagrangian model GRAL; the update was in May 2003) and assure it more suitable for the actual situations in Nanjing. One is to derive a piecewise function of the intermediate parameter ‘stiffness’. Another is to take Romberg NOx-NO2 scheme into account. After these 2 works on GRAL3.5TM, NO2 dispersion from portals of all the 6 tunnels in Nanjing inner ring has been simulated. The importance of limiting urban traffic volume to control air quality around tunnel portals and roadways has been emphasized.


2020 ◽  
Vol 10 (14) ◽  
pp. 4931
Author(s):  
Qianying Yi ◽  
David Janke ◽  
Lars Thormann ◽  
Guoqiang Zhang ◽  
Barbara Amon ◽  
...  

The application of naturally ventilated pig buildings (NVPBs) with outdoor exercise yards is on the rise mainly due to animal welfare considerations, while the issue of emissions from the buildings to the surrounding environment is important. Since air pollutants are mainly transported by airflow, the knowledge on the airflow characteristics downwind the building is required. The objective of this research was to investigate airflow properties downwind of a NVPB with a roofed outdoor exercise yard for roof slopes of 5°, 15°, and 25°. Air velocities downwind a 1:50 scaled NVPB model were measured using a Laser Doppler Anemometer in a large boundary layer wind tunnel. A region with reduced mean air velocities was found along the downwind side of the building with a distance up to 0.5 m (i.e., 3.8 times building height), in which the emission concentration might be high. Additional air pollutant treatment technologies applied in this region might contribute to emission mitigation effectively. Furthermore, a wake zone with air recirculation was observed in this area. A smaller roof slope (i.e., 5° slope) resulted in a higher and shorter wake zone and thus a shorter air pollutant dispersion distance.


2018 ◽  
Vol 23 (1) ◽  
Author(s):  
DOINA CAPSA ◽  
VALENTIN NEDEFF ◽  
NARCIS BARSAN ◽  
Emilian Mosnegutu ◽  
DANA CHITIMUS

<p>Air quality depends on the type and size of industrial activities, traffic intensity, municipal and industrial waste management etc. In addition, air quality in urban areas depends by the green areas management, population density, climatic conditions and geographic. This paper study the correlations between the most important meteorological factors, humidity, temperature, wind and benzene accidental pollution, with influence on pollutant dispersion (related to 2008). The correlation were performed by taken in to considerations the accidental benzene pollution recorded in 2008 in Bacau City and meteorological factor recorded at the regional meteorological station.</p>


2021 ◽  
Vol 237 ◽  
pp. 01037
Author(s):  
Haizhen Zhang ◽  
Jiang Wei

During the epidemic period, Urumqi has been sealed off from the city’s management, just as “suspended” state.From an environmental point of view, the reduction of energy consumption during the closure of the city can be considered as an energy control to study the resulting reduction of atmospheric pollutant concentration changes.In this paper, the monitoring data of air pollutant concentration in the same period of city closure and normal years are compared, and the results show that the air pollutant concentration has decreased in different degrees during the period of city closure.The largest decrease was44.66% for NO2, -40.13% for CO, -36.44% for PM2.5, and the smallest was-2.06% for SO2.Multivariate analysis of variance showed that energy control had a significant effect on the concentration of pollutants during the city closure, for example NO2 (F=128.96, Sig.=0.000), PM10 (F=29.58, Sig=0.000), PM2.5 (F=13.98, Sig.=0.000), CO(F=46.34;Sig.=0.000). Through the analysis of the data, it can be concluded that the air quality of Urumqi in winter is poor and the concentration of pollutants is high. The energy control during the closing period played a positive role in pollutant emission reduction and effectively improved the quality of atmospheric environment.


2012 ◽  
Vol 610-613 ◽  
pp. 1387-1397 ◽  
Author(s):  
Wen Yong Wang ◽  
Nan Chen ◽  
Xiao Juan Ma

The CMAQ model (Community Multiscale Air Quality model) was used to stimulate the atmospheric environmental quality of Chengdu urban agglomeration. The result shows that air pollutant concentration in some zones of the urban agglomeration is higher than the allowable limit of the national grade II standard. Fortunately, such zones only cover a small area. Zones where the average daily and annual PM10 concentration is higher than the allowable limit only account for 4% of the total area of Chengdu urban agglomeration. Less than 1% of the total area has the concentration of other pollutants higher than the limit. Zones with pollutant concentration higher than the limit are mainly distributed in Chengdu City, Mianyang City, and Meishan City. Pollutants emitted from the cities of Chengdu urban agglomeration shift on to and interact with each other. Therefore, the air pollutant concentration of one city is partially attributable to pollutants emitted from its own pollution sources and a part of or even most of it results from pollutants from other cities. For example, regarding PM10 in air of Deyang City, only 12% comes from its own pollution sources, and 55% comes from pollution sources of Chengdu, and the rest 29% comes from pollution sources of Mianyang. Regarding Sulfur dioxide in air of Chengdu, 59% comes from local pollution sources of Chengdu and 23% comes from pollution sources of Deyang. Other pollutants are also subject to such a rule. As in the urban agglomeration, there are zones where pollutant concentration is higher than the allowable limit, the existing pollution sources must be further controlled by setting reduction target according to the total capacity. The pollutant emission should be reduced by means of eliminating backward productivity, adjusting structure and layout of industries, and controlling pollution sources in depth to effectively improve the regional environmental air quality. At the same time, as pollutants emitted from the cities interact with each other, the 5 cities must sign a joint prevention and control agreement to collaborate in control of sulfur dioxide, nitrogen oxides, smoke and dust, and organic pollutants.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 440
Author(s):  
Yi Ai ◽  
Yunshan Ge ◽  
Zheng Ran ◽  
Xueyao Li ◽  
Zhibing Xu ◽  
...  

Diesel-powered agricultural machinery (AM) is a significant contributor to air pollutant emissions, including nitrogen oxides (NOx) and particulate matter (PM). However, the fuel consumption and pollutant emissions from AM remain poorly quantified in many countries due to a lack of accurate activity data and emissions factors. In this study, the fuel consumption and air pollutant emission from AM were estimated using a survey and emission factors from the literature. A case study was conducted using data collected in Anhui, one of the agricultural provinces of China. The annual active hours of AM in Anhui ranged 130 to 175 h. The estimated diesel fuel consumption by AM was 1.45 Tg in 2013, approximately 25% of the total diesel consumption in the province. The air pollutants emitted by AM were 57 Gg of carbon monoxide, 14 Gg of hydrocarbon, 74 Gg of NOx and 5.7 Gg of PM in 2013. The NOx and PM emissions from AM were equivalent to 17% and 22% of total on-road traffic emissions in Anhui. Among nine types of AM considered, rural vehicles are the largest contributors to fuel consumption (31%) and air emissions (33–45%).


Author(s):  
Qianying Yi ◽  
David Janke ◽  
Lars Thormann ◽  
Guoqiang Zhang ◽  
Barbara Amon ◽  
...  

The application of naturally ventilated pig buildings (NVPBs) with outdoor exercise yards is on the rise mainly due to animal welfare considerations, while the issue of emissions from the buildings to the surrounding environment is important. Since air pollutants are mainly transported by airflow, the knowledge on the airflow characteristics downwind the building is required. The objective of this research was to investigate airflow properties downwind of a NVPB with a roofed outdoor exercise yard for roof slopes of 5&deg;, 15&deg;, and 25&deg;. Air velocities downwind a 1:50 scaled NVPB model were measured using a Laser Doppler Anemometer in a large boundary layer wind tunnel. A region with reduced mean air velocities was found along the downwind side of the building with a distance up to 0.5 m (i.e. 3.8 times building height), in which the emission concentration might be high. It was found that a smaller roof slope (i.e. 5&deg; slope) resulted in a higher and shorter wake zone and thus a shorter air pollutant dispersion distance. It was concluded that a smaller roof slope could contribute to the dilution of air pollutants and a lower air pollutant concentration near the ground.


2017 ◽  
Vol 23 (1) ◽  
pp. 12-19
Author(s):  
DOINA CAPSA ◽  
VALENTIN NEDEFF ◽  
NARCIS BARSAN ◽  
EMILIAN MOSNEGUTU ◽  
DANA CHITIMUS

Air quality depends on the type and size of industrial activities, traffic intensity, municipal and industrial waste management etc. In addition, air quality in urban areas depends by the green areas management, population density, climatic conditions and geographic. This paper study the correlations between the most important meteorological factors, humidity, temperature, wind and benzene accidental pollution, with influence on pollutant dispersion (related to 2008). The correlation were performed by taken in to considerations the accidental benzene pollution recorded in 2008 in Bacau City and meteorological factor recorded at the regional meteorological station.


Sign in / Sign up

Export Citation Format

Share Document