scholarly journals Engineering solutions for heart efficient exterior walls in climatic condition of the Republic of Bashkortostan

2019 ◽  
Vol 97 ◽  
pp. 02039 ◽  
Author(s):  
Anatoly Bedov ◽  
Azat Gabitov ◽  
Askar Gaysin ◽  
Alexander Salov

Problems and disadvantages of some technical solutions concerning modern heat efficient exterior walls are considered herein under experience of engineering, construction and operation of residential and civil buildings in the Republic of Bashkortostan. Special attention is paid to defects in engineering and erection of three-layer walls, and functioning principles of all components of the wall are strictly fixed. Recommendation to increase maintenance-free service life by meeting special engineering requirements are given herein. Effect to increase buildings heat insulation is achieved by: reducing heat loss through separate enclosing structures and heat insulating shells of the building thereby enabling to reduce thermal power requirements; improving heat acceptability in rooms by decreasing rate of radiative and convective heat exchange in outer surface of enclosures; reducing environmental pollution due to air emissions reduction. Exterior wall insulation is the important element of the building heat balance. Many researchers in this field currently focus on analysis of series of residential buildings with different number of storeys made by engineering solutions for exterior walls to increase heat homogeneity thereof. Subject: main engineering solutions for heat efficient exterior walls. Objectives: three-layer wall constructed of masonry units; exterior three-layer wall within 121u panel series; three-layer wall of “Ventilated façade” system; façade heat insulation with plaster on lath; wall made of load-bearing structural insulating materials. Materials and methods: calculation of reduced total thermal resistance in exterior walls. Results: one of the most efficient methods to meet specific heat-shielding performance requirements is to increase heat homogeneity of the exterior wall. Conclusions: in the short term structural components of three-layer exterior walls are to be upgraded according to construction rules and regulations SNiP 23-02-2003 “Buildings Heat Insulation” thereby enabling the engineering solutions to meet the appropriate norms and rules.

2021 ◽  
Vol 263 ◽  
pp. 02013
Author(s):  
Ekaterina Ibe ◽  
Galina Shibaeva ◽  
Svyatoslav Mironov ◽  
Danil Litvin

Currently, in the Republic of Khakassia, much attention is paid to research aimed at reducing air pollution due to fuel combustion. In this aspect, the issue of increasing the energy efficiency of buildings is relevant. The use of ventilated facade systems with an air gap makes it possible to improve the energy efficiency class of buildings and modernize the facades. However, these facade systems have weak points that require detailed and high-quality study. Often, design solutions are used that are used in warm climates without taking into account the peculiarities of a cold climate - frequent changes in temperature, humidity, wind loads, and other influences, which can lead to negative manifestations. Facade systems with a ventilated air gap must provide the ability to monitor the operability of all system elements and, if necessary, carry out repair and reconstruction work with minimal operating costs. The article presents an analysis of the thermal properties of an external fence using a hinged facade structure. The influence of installation defects and heat-conducting inclusions on the heat-shielding properties of the building envelope is shown. It was determined that during operation the moisture-windproof membrane loses its vapor-permeable properties.


Author(s):  
Victorov V. V. ◽  
◽  
Sharafutdinov M. A. ◽  
Mukhamadeeva O. R. ◽  
Pavlova M. Yu. ◽  
...  

2020 ◽  
Vol 0 (6) ◽  
pp. 13-19
Author(s):  
Guzel Gumerova ◽  
Georgiy Gulyuk ◽  
Dmitry Kucher ◽  
Anatoly Shuravilin ◽  
Elena Piven

Data of long-term researches (2015–2018) in southern forest-steppe zone of the Republic of Bashkortostan, is justified theoretically and experimentally the mode of irrigation of potatoes on leached chernozems of unsatisfactory, satisfactory and good ameliorative condition of irrigated lands. For the growing periods of potatoes with different heat and moisture supply, the number of watering, the timing of their implementation, irrigation and irrigation norms are established. On lands with unsatisfactory meliorative state the number of irrigation depending on weather conditions of potato vegetation period varied from 0 to 3 (1.5 on average) with average irrigation norm – 990 m3/ha. With satisfactory meliorative state of lands the number of irrigation on average increased from 0 to 4 (2.3 on average) with irrigation norm – 1305 m3/ha. On lands with good meliorative state the number of irrigation was the highest – from 1 to 5 (3 on average) with average irrigation irrigation norm is 1653 m3/ha. It was noted that in the dry periods of potato vegetation the greatest number of watering was carried out (3–5 watering), and in the wet periods (2017) watering was not carried out except for the area with a good reclamation state, where only one irrigation was carried out by the norm of 550 m3/ha. Water consumption of potato was studied in dynamics as a whole during the growing season and the months of the growing season depending on weather conditions of vegetation period and land reclamation condition of irrigated lands, as well as in the control (without irrigation). The lowest total water consumption was in the area without irrigation and averaged 226.8 mm. In irrigated areas, its values increased to 319-353.4 mm. The average daily water consumption varied from 2.12 to 3.3 mm. The highest rates of potato water consumption were observed in June and July, and the lowest – in May and August. In the total water consumption of potatoes on the site without irrigation, the largest share was occupied by atmospheric precipitation and in addition to them the arrival of moisture from the soil. Irrigation water was used in irrigated areas along with precipitation, the share of which was 30.2–46.1 %.


2020 ◽  
Vol 99 (4) ◽  
pp. 405-411
Author(s):  
Elena Ju. Gorbatkova

Introduction. The important factors affecting health and performance of young people are the conditions of education, in particular, a comfortable microclimate in the classrooms of higher educational institutions. Materials and methods. In view of the urgency of this problem, an analysis was made of the microclimate parameters of educational organizations of different profiles (Ufa city, the Republic of Bashkortostan). 294 classrooms were studied in 22 buildings of 4 leading universities in Ufa. A total of 3,822 measurements were taken to determine the parameters of the microclimate. The analysis of ionizing radiation in the aerial environment of classrooms. There was performed determination of radon and its affiliated products content. In order to assess the conditions and lifestyle of students of 4 higher educational institutions of the city of Ufa, we conducted an anonymous survey of 1,820 students of I and IV years of education. Results. The average temperature in the classrooms of all universities studied was 23.9±0.09 C. The average relative humidity in all classrooms was 34.2 ± 0.42%. Analysis of ionizing radiation (radon and its daughter products decay) in the aerial environment of the classrooms and sports halls located in the basement determined that the average annual equivalent equilibrium volumetric activity of the radon daughter products (EROA ± Δ222Rn) ranged from 28 ± 14 to 69 ± 34.5 meter, which meets the requirements established by SanPiN. Conclusion. The hygienic assessment of the microclimate parameters of educational institutions of various profile revealed a number of deviations from the regulated norms. The results indicate the need to control the parameters of the microclimate, both from the administration of universities, and from the professors. According to the results of the study, recommendations were prepared for the management of higher educational institutions in Ufa.


Sign in / Sign up

Export Citation Format

Share Document