scholarly journals Degradation of Trichloroethylene in Groundwater Using Iron Catalyzed Calcium Peroxide Systems

2020 ◽  
Vol 143 ◽  
pp. 02046
Author(s):  
Kegang Zhang ◽  
Xiaodong Wang ◽  
Xiaohui Zhang ◽  
Shengjie Peng

The application of calcium peroxide (CaO2) activated with ferrous ion chelate sodium citrate (TCD)to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results show that the removal efficiency of TCE increases first and then decreases with the increase of CaO2 and Na2S2O8 dosage; the chelation ratio of Fe(II)/TCD, too much or too little, will affect the removal efficiency of TCE; when the molar ratio of CaO2/ Fe(II)/ TCD/ TCE is 18/6/6/1, the removal efficiency of TCE is the highest, reaching 97.99% within 200Min. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites.

Author(s):  
Paula Cajal-Mariñosa ◽  
Ruth G. de la Calle ◽  
F. Javier Rivas ◽  
Tuula Tuhkanen

AbstractThe removal efficiency of two different types of peroxide addition, catalyzed hydrogen peroxide (CHP) and sodium percarbonate (SPC) were compared on a highly PAH-contaminated soil from a wood impregnation site. In an attempt to simulate real in situ reagents delivery, experiments have been carried out in acrylic columns. The main parameters affecting contaminant removal were the reagent’s temperature and the total addition of peroxide (g


2014 ◽  
Vol 675-677 ◽  
pp. 547-550
Author(s):  
Jun Jie Yue ◽  
Xiao Qiao Zhu ◽  
Yu Ting Wang ◽  
Yu Qin Zhang ◽  
Li Zhao ◽  
...  

In situ chemical oxidation with persulfate (PS) anion (S2O82-) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). This laboratory study investigated the use of the oxidant sodium PS for the chemical oxidation of TCE at different conditions to determine the influence of temperature, pH, and the PS/TCE molar ratio. Experiments revealed that higher temperatures, lower pH, and higher PS/TCE molar ratios were to the benefit of TCE oxidation by PS. By investigating the reaction kinetics, the degradations of contaminant can be described by use of pseudo-first-order reaction. At the temperatures ranging from 25°C to 40°C, the activation energy for the degradation of TCE was determined to be 85.04 KJ/mol.


2011 ◽  
Vol 192 (3) ◽  
pp. 1437-1440 ◽  
Author(s):  
J. Khodaveisi ◽  
H. Banejad ◽  
A. Afkhami ◽  
E. Olyaie ◽  
S. Lashgari ◽  
...  

2010 ◽  
Vol 92 ◽  
pp. 23-28 ◽  
Author(s):  
Xiang Zhong Ren ◽  
Li Zhang ◽  
Ying Kai Jiang ◽  
Pei Xin Zhang ◽  
Jian Hong Liu ◽  
...  

AgCl@polypyrrole(PPy) nanocomposites were synthesized through in situ chemical oxidation polymerization by using poly(vinylpyrrolidane) (PVP) as dispersant, and some Au colloid were prepared by using KBH4 as reductant and sodium citrate as stabilizer, then the Au nanoparticles-AgCl@PPy hybrid material was formed by physical chemical reaction. Fourier transform infrared spectrometer (FTIR) and electron dispersive spectrometer (EDS) data suggested that the hybrid material were composed of Au, AgCl and PPy. An amperometric glucose biosensor was fabricated by adsorbing glucose oxidase (GOx) to an Au nanoparticles-AgCl@PPy hybrid material modified platinum electrode. The biosensor exhibited a super highly sensitive response to H2O2.


Author(s):  
Huchuan Yan ◽  
Cui Lai ◽  
Dongbo Wang ◽  
Shiyu Liu ◽  
Xiaopei Li ◽  
...  

Refractory organic pollutants in wastewater have the characteristics of persistence and toxicity, which seriously threaten the health and safety of humans and other organisms. Many researchers have committed to developing...


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4237-4246
Author(s):  
Tian Xie ◽  
Zhi Dang ◽  
Jian Zhang ◽  
Qian Zhang ◽  
Rong-Hai Zhang ◽  
...  

The combination of pump-and-treat and in situ chemical oxidation processes can effectively accelerate the remediation of DNAPL pollutant in groundwater.


Sign in / Sign up

Export Citation Format

Share Document