scholarly journals Study of a Clean Microgrid for the Japanese Antarctica Showa Base

2020 ◽  
Vol 160 ◽  
pp. 01001
Author(s):  
F Shoki ◽  
S Obara

The Antarctica Showa Base has been powered primarily by diesel power generation. However, heavy oil fossil fuel is used for power generation by diesel generators. The Showa base is located in Antarctica, so there is heat demand throughout the year. Therefore, the capacity of transportation of fuel and emissions of carbon dioxide has become an issue. For these reasons, the construction of clean energy systems using renewable energy in order to locally produce energy for local consumption is being planned. In this study, we will design a microgrid based on the introduction of renewable energy (photovoltaics generation and wind power generators) and solid oxide fuel cell (SOFC), which does not emit carbon dioxide during power generation and can use heat cascades. However, there is a risk of a power failure because the power quality decreases with the introduction of renewable energy. In this paper, we clarified the introduction rate of renewable energy with the lowest frequency fluctuation and clarified the introduction limit of renewable energy in summer and winter.

Author(s):  
Jibi Kurian ◽  
Lathi Karthi

From the older concept of photovoltaic installation, which includes the addition of solar panels to a building’s roof, the construction technology has merged with the photovoltaics technology. The result is Building Integrated Photovoltaics (BIPV), in which integrating the architectural, structural and aesthetic component of photovoltaics into buildings. Building integration of photovoltaics (BIPVs) has been recognized worldwide as a pivotal technology enabling the exploitation of innovative renewable energy sources in buildings, acting as electric power generators within the new framework of smart cities. The standard semitransparent photovoltaic (PV) modules can largely replace architectural glass installed in the building envelopes such as roofs, skylights, and facade of a building. Their main features are power generation and transparency, as well as possessing a heat insulating effect. PV glass shows the same mechanical properties as a conventional, architectural glass used in construction. Additionally, it provides free and clean energy. Given these properties, PV Glass maximizes the performance of the building’s envelope. The cost of the PV system and its implementation is still significantly high in comparison to solar thermal systems. Keywords: Building Integrated Photovoltaics, renewable energy, power generation, heat insulating effect


2021 ◽  
Vol 44 (1) ◽  
pp. 11-17
Author(s):  
Sheldon Marshall ◽  
Randy Koon Koon

The integration of renewable energy (RE) into the overall energy mix of Caribbean nations has been increasing in recent times. The volatile nature of the carbon-based industry through fluctuations in prices of fossil fuel based-products renders it necessary to promote an aggressive energy profile transition to renewable energy, as this is crucial to energy security in these vulnerable Small Island Developing States (SIDS). The nation of Barbados has notably understood this reality and, as such, its government has endorsed the approach of 100% RE implementation by 2030. This paper explores three distinctive annual growth rate (AGR) scenarios to assess the impact on the expected power generation, economic and environmental parameters through the period of 2019-2030. Notable findings at a high case scenario for 2030 (at an AGR of 3%) projects a power generation of 1.343 Tera-watts-hour (TWh), which will displace 790,500 barrels of oil equivalent (boe), resulting in an abatement of approximately 0.95 million tons of carbon dioxide into the atmosphere.


Author(s):  
Ayong Hiendro ◽  
Ismail Yusuf ◽  
F. Trias Pontia Wigyarianto ◽  
Kho Hie Khwee ◽  
Junaidi Junaidi

<span lang="EN-US">This paper analyzes influences of renewable fraction on grid-connected photovoltaic (PV) for office building energy systems. The fraction of renewable energy has important contributions on sizing the grid-connected PV systems and selling and buying electricity, and hence reducing net present cost (NPC) and carbon dioxide (CO<sub>2</sub>) emission. An optimum result with the lowest total NPC for serving an office building is achieved by employing the renewable fraction of 58%, in which 58% of electricity is supplied from the PV and the remaining 42% of electricity is purchased from the grid. The results have shown that the optimum grid-connected PV system with an appropriate renewable fraction value could greatly reduce the total NPC and CO<sub>2</sub> emission.</span>


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 654
Author(s):  
Minh-Khai Nguyen

In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical [...]


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2472 ◽  
Author(s):  
Changyu Zhou ◽  
Guohe Huang ◽  
Jiapei Chen

In this study, a type-2 fuzzy chance-constrained fractional integrated programming (T2FCFP) approach is developed for the planning of sustainable management in an electric power system (EPS) under complex uncertainties. Through simultaneously coupling mixed-integer linear programming (MILP), chance-constrained stochastic programming (CCSP), and type-2 fuzzy mathematical programming (T2FMP) techniques into a fractional programming (FP) framework, T2FCFP can tackle dual objective problems of uncertain parameters with both type-2 fuzzy characteristics and stochastic effectively and enhance the robustness of the obtained decisions. T2FCFP has been applied to a case study of a typical electric power system planning to demonstrate these advantages, where issues of clean energy utilization, air-pollutant emissions mitigation, mix ratio of renewable energy power generation in the entire energy supply, and the displacement efficiency of electricity generation technologies by renewable energy are incorporated within the modeling formulation. The suggested optimal alternative that can produce the desirable sustainable schemes with a maximized share of clean energy power generation has been generated. The results obtained can be used to conduct desired energy/electricity allocation and help decision-makers make suitable decisions under different input scenarios.


Sign in / Sign up

Export Citation Format

Share Document