scholarly journals A thermostatted model for a network of energy sources: Analysis on the initial condition

2020 ◽  
Vol 170 ◽  
pp. 01031
Author(s):  
Marco Dalla Via ◽  
Carlo Bianca ◽  
Ikram El. Abbassi ◽  
Abdelmoumen Darcherif

The energy multisource network is a complex system characterized by the interactions between the energy sources. Recently the thermostatted kinetic theory has been proposed for the modelling of a hybrid energy multisource network with storage. The present paper is devoted to the presentation of a thermostatted kinetic theory model for a network composed of a non-renewable and a renewable energy source. The storage system is modelled by introducing an outer force field. In particular the modelling interest is addressed to the analysis on the initial condition of the distribution functions which describe the two energy sources.

2019 ◽  
Vol 21 (4) ◽  
pp. 2060-2073 ◽  
Author(s):  
Houssam Eddine Chakir ◽  
Ouadi Hamid ◽  
Giri Fouad

2020 ◽  
pp. 43-54
Author(s):  
Helena M. Ramos ◽  
◽  
Mariana Simão

A elevada intermitência das fontes de energia renováveis condiciona a produção de energia elétrica, que continua a depender muito dos combustíveis fósseis. Uma vez que existe complementaridade por parte das fontes de energia renováveis, a sua integração conjunta é, sem dúvida, a melhor solução para reduzir esta dependência. Aliado a este facto, poderá coexistir um sistema de armazenamento por bombagem, capaz de gerar reservas hídricas, que serão aproveitadas quando a procura exceder a oferta energética. Procedeu-se ao desenvolvimento de dois modelos: um sobre custos de turbomáquinas e outro que visa o estudo do potencial de recuperação de energia de uma solução energética híbrida com armazenamento por bombagem combinado com fonte de energia eólica. Foram estudadas diferentes combinações para estas duas fontes de energia renovável, analisando o consumo satisfeito e a energia eólica não consumida, tendo-se concluído que o excedente de energia eólica pode ser aproveitado para bombagem. The high intermittence of renewable energy sources determines the production of electricity, which remains highly dependent on fossil fuels. Since there is complementarity between renewable energy sources, their joint integration is a potential solution to reduce this dependency. Consequentially, a pumping storage system capable of generating water reserves can coexist, which will be used when demand exceeds the energy supply. Two models were developed: one based on turbomachinery costs and the other based on the potential of energy recovery of a hybrid energy solution with pump storage combined with wind energy. Different combinations were studied for these two sources, analysing the satisfied consumption and the wind energy that is not consumed, in which it was concluded that the surplus of wind energy can be used by pumped storage.


Author(s):  
Palanisamy R ◽  
Vijayakumar K

Multilevel inverters find use in industrial drive applications and grid based power generation. Owing to the increasing power demand and rising conventional generation costs a new alternative in renewable energy source is gaining popularity and acceptance. A Wind-PV hybrid renewable energy source is proposed which increases power reliability and improves standalone generation efficiency. A Quasi Z source network allows inverter shoot through possibility while boosting the dc voltage fed to the Neutral Point Clamped MLI. Simulation results were obtained for two levels VSI and further simulations for 3 level quasi NPC-TLI verified using Matlab Simulink and hardware implementation results verified by using DSP controller


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yiwei Ma ◽  
Ping Yang ◽  
Zhuoli Zhao ◽  
Yuewu Wang

An optimal economic operation method is presented to attain a joint-optimization of cost reduction and operation strategy for islanded microgrid, which includes renewable energy source, the diesel generator, and battery storage system. The optimization objective is to minimize the overall generating cost involving depreciation cost, operation cost, emission cost, and economic subsidy available for renewable energy source, while satisfying various equality and inequality constraints. A novel dynamic optimization process is proposed based on two different operation control modes where diesel generator or battery storage acts as the master unit to maintain the system frequency and voltage stability, and a modified particle swarm optimization algorithm is applied to get faster solution to the practical economic operation problem of islanded microgrid. With the example system of an actual islanded microgrid in Dongao Island, China, the proposed models, dynamic optimization strategy, and solution algorithm are verified and the influences of different operation strategies and optimization algorithms on the economic operation are discussed. The results achieved demonstrate the effectiveness and feasibility of the proposed method.


Author(s):  
Sean Monemi ◽  
Daniel Kifle

Generation of renewable energy sources are being adopted more widely in both large and small scales by federal agencies and private industries. We will explore to investigate what their impact would be by building a prototype model of wind and solar energy Source generation. This model will be integrated into our current model of the smart grid. The generation model consists of a solar panel and an array of wind turbines connected to a battery storage system. The energy output is being monitored and reported in real time. This energy will supply the already built model of the electric grid.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8095
Author(s):  
Agnieszka Bieda ◽  
Agnieszka Cienciała

In the age of the impending climate crisis, and further forecast ecological catastrophes, humankind has begun to think with growing interest about replacing existing energy sources with renewable ones. An increasing number of people have begun to discuss the need to implement registries that collect information about the energy potential of specific parts of the environment we live in. Additionally, the simultaneous registration of installations used for obtaining energy from alternative sources is desirable. In addition to quantitative attributes, such databases should also contain comprehensive spatial information. Since, in the era of globalization, the creation of such databases ought to be standardized, the purpose of this study is to indicate the directions in which the cadastre of renewable energy sources should be developed by: (i) reviewing the solutions of renewable energy sources that have been described in the scientific literature; (ii) analyzing the content of selected geoportals containing data on renewable energy sources. The literature review was preceded by a detailed bio-metric analysis, whereas the content analysis of the geoportals led to the creation of a flow chart containing a proposal for a renewable energy source cadastre, and a ranking of the analyzed portals. Nevertheless, the conceptual work was limited to the solar cadastre only.


Sign in / Sign up

Export Citation Format

Share Document