scholarly journals A Planning Method for Energy Storage System of Integrated Community Energy System Considering Demand Response

2021 ◽  
Vol 252 ◽  
pp. 03009
Author(s):  
Jinghua Li ◽  
Chenbing Hua ◽  
Deyu Jiang ◽  
Qian Jiang ◽  
Kuihua Wu

Demand response plays a significant role in peak load shifting, storage capacity configuration and renewable energy utilization. A bi-level planning method for energy storage system of integrated community energy system considering the demand response is proposed in this paper. In the upper level, the investment cost of electrical energy storage and thermal energy storage, operation and maintenance cost and fuel cost of the integrated community energy system, as well as the compensation cost to the energy consumer, are considered; in the lower level, the responded demand of the energy consumer is taken into consideration to minimize the energy bill of the energy consumer. An actual planning for energy storage system of integrated community energy system shows the effectiveness of the proposed method.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2649 ◽  
Author(s):  
Jiashen Teh

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.


Author(s):  
M. S. A. Mustaza ◽  
M. A. M. Ariff ◽  
Sofia Najwa Ramli

Energy storage system (ESS) plays a prominent role in renewable energy (RE) to overcome the intermittent of RE energy condition and improve energy utilization in the power system. However, ESS for residential applications requires specific and different configuration. Hence, this review paper aims to provide information for system builders to decide the best setup configuration of ESS for residential application. In this paper, the aim is to provide an insight into the critical elements of the energy storage technology for residential application. The update on ESS technology, battery chemistry, battery charging, and monitoring system and power inverter technology are reviewed. Then, the operation, the pro, and cons of each variant of these technologies are comprehensively studied. This paper suggested that the ESS for residential ESS requires NMC battery chemistry because it delivers an all-rounded performance as compared to other battery chemistries. The four-stages constant current (FCC) charging technique is recommended because of the fast charging capability and safer than other charging techniques reviewed. Next, the battery management system (BMS) is recommended to adapt in advance machine learning method to estimate the state of charge (SOC), state of health (SOH) and internal temperature (IT) to increase the safety and prolong the lifespan of the batteries. Finally, these recommendations and solutions aimed to improve the utilization of RE energy in power system, especially in residential ESS application and offer the best option that is available on the shelf for the residential ESS application in the future.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
V. Bagalini ◽  
B. Y. Zhao ◽  
R. Z. Wang ◽  
U. Desideri

Distributed renewable energy share increase in electricity generation is creating challenges for the whole power system, due to its intermittent and nonprogrammable nature. Energy storage has the potential to solve those issues although its technical, economic, and environmental impact is up for debate. The paper presents a study about a PV-battery energy storage system installed in a grid-connected residential apartment in the Green Energy Laboratory at Shanghai Jiao Tong University, China. Daily experimental results show how the presence of energy storage reduces the midday feed-in of excess PV power and the evening peak demand, providing benefits to the distribution network in terms of reduced voltage swings and peak load. Considering the Chinese context, an economic analysis is carried out to assess the profitability of residential PV-battery systems, using the net present value as the economic indicator of an 18-year investment in which the battery pack is replaced twice (6 life years). The analysis shows that such system is not economically viable due to a combination of low electricity prices, valuable PV incentives, and high technology costs. However, considering a future scenario of doubled electricity tariff, halved export tariff, and falling technology costs (-66% battery and -17% PV and inverter), PV-battery investment becomes profitable and shows more resilience to future scenarios than PV-only investment.


2021 ◽  
Vol 16 (3) ◽  
pp. 1273-1284
Author(s):  
Hye Ji Kim ◽  
Hosung Jung ◽  
Young Jun Ko ◽  
Eun Su Chae ◽  
Hyo Jin Kim ◽  
...  

AbstractThis paper proposes an algorithm for the cooperative operation of air conditioning facilities and the energy storage system (ESS) in railway stations to minimize electricity. Unlike traditional load patterns, load patterns of an urban railway station can peak where energy charge rates are not high. Due to this possibility, if applying the traditional peak-reduction algorithm to railway loads, energy changes can increase, resulting in higher electricity bills. Therefore, it is required to develop a new method for minimizing the sum of capacity charges and energy charges, which is a non-linear problem. To get a feasible solution for this problem, we suggest an algorithm that optimizes the facility operation through two optimizations (primary and secondary). This method is applied to the air-quality change model for operating air conditioning facilities as demand-response (DR) resources in railway stations. This algorithm makes it possible to estimate operable DR capacity every hour, rather than calculating the capacity of DR resources conservatively in advance. Finally, we perform a simulation for the application of the proposed method to the operation of DR resources and ESS together. The simulation shows that electricity bills become lowered, and the number of charging and discharging processes of ESS is also reduced.


Sign in / Sign up

Export Citation Format

Share Document