scholarly journals Design of Inverter Side of Modular Grid Simulator Based on Proportional integral-Quasi-proportional resonance Control

2021 ◽  
Vol 261 ◽  
pp. 01052
Author(s):  
Ren Huai Xin ◽  
Xie Yuan ◽  
Zhang Kai

The tracking of a given voltage in the traditional double closed-loop proportional integral control in the current power grid simulator has problems such as static difference, delay and oscillation. It is proposed that the voltage outer loop and current inner loop of the inverter side of the power grid simulator adopt proportional integral and quasi-proportional resonance control respectively, and the topology of the inverter adopts a cascaded modular design to establish a single-phase inverter model. Compared with the traditional double closed-loop proportional-integral control, it is verified that the proportional-integral-quasi-proportional resonant controller can effectively improve the system’s ability to track the command voltage and the stability of the output voltage.

2020 ◽  
pp. 107754632095792
Author(s):  
Sahaj Saxena ◽  
Yogesh V Hote

In a feedback control loop, when there exists a delay in processing the control signal (often called computational delay), it is difficult to stabilize the system, particularly when the system exhibits uncertainty. To solve this problem, we proposed a new robust proportional integral control strategy for a class of uncertain systems exhibiting parametric uncertainty. A two-stage scheme is proposed in which the first stage identifies the worst plant that has the highest chance of facing instability; and in the second stage, based on the worst plant, the tuning parameters of the proportional integral controller are determined using the stability boundary locus approach under the desired closed-loop specifications of gain and phase margins. The efficiency of the proposed scheme is verified for servo and regulatory control problems.


2019 ◽  
Vol 16 (1) ◽  
pp. 172988141881995
Author(s):  
Francisco G Salas ◽  
Jorge Orrante-Sakanassi ◽  
Raymundo Juarez-del-Toro ◽  
Ricardo P Parada

Parallel robots are nowadays used in many high-precision tasks. The dynamics of parallel robots is naturally more complex than the dynamics of serial robots, due to their kinematic structure composed by closed chains. In addition, their current high-precision applications demand the innovation of more effective and robust motion controllers. This has motivated researchers to propose novel and more robust controllers that can perform the motion control tasks of these manipulators. In this article, a two-loop proportional–proportional integral controller for trajectory tracking control of parallel robots is proposed. In the proposed scheme, the gains of the proportional integral control loop are constant, while the gains of the proportional control loop are online tuned by a novel self-organizing fuzzy algorithm. This algorithm generates a performance index of the overall controller based on the past and the current tracking error. Such a performance index is then used to modify some parameters of fuzzy membership functions, which are part of a fuzzy inference engine. This fuzzy engine receives, in turn, the tracking error as input and produces an increment (positive or negative) to the current gain. The stability analysis of the closed-loop system of the proposed controller applied to the model of a parallel manipulator is carried on, which results in the uniform ultimate boundedness of the solutions of the closed-loop system. Moreover, the stability analysis developed for proportional–proportional integral variable gains schemes is valid not only when using a self-organizing fuzzy algorithm for gain-tuning but also with other gain-tuning algorithms, only providing that the produced gains meet the criterion for boundedness of the solutions. Furthermore, the superior performance of the proposed controller is validated by numerical simulations of its application to the model of a planar three-degree-of-freedom parallel robot. The results of numerical simulations of a proportional integral derivative controller and a fuzzy-tuned proportional derivative controller applied to the model of the robot are also obtained for comparison purposes.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 551-563 ◽  
Author(s):  
Sushma Kakkar ◽  
Rajesh Kumar Ahuja ◽  
Tanmoy Maity

The high-performance grid-interfaced inverters are in demand as they are rapidly used in renewable energy systems. The main objective of grid-interfaced inverters is to inject high-quality active and reactive power with sinusoidal current. Many control schemes have been proposed earlier in the literature, but the operation under parametric uncertainties has not been given much attention. In this article, an adaptive network–based fuzzy inference control algorithm for a three-phase grid-interfaced inverter under parametric uncertainties is proposed. The main purpose of the proposed technique is to enhance the response time, decrease the steady-state oscillation in the injected active and reactive power and enhance the power quality even with parametric uncertainties. For assessment and evaluation reason, the conventional proportional–integral control is compared with the proposed controller. For a fair comparison, the gain setting for the proportional–integral control is obtained by Particle swarm optimization algorithm. The suggested system is developed and simulated in MATLAB/Simulink. Simulation results demonstrate that both the controllers work well to regulate the powers to required values, even with parametric variations. However, the proposed control demonstrates superiority in comparison to conventional proportional–integral control in terms of speedy response, decreased steady-state fluctuations, better power quality and increased robustness. The rise time and fluctuations in the per-unit active and reactive power are much less with the proposed control. Total harmonic distortion of the injected current and grid current are significantly better than the conventional proportional–integral control.


Energy ◽  
2018 ◽  
Vol 163 ◽  
pp. 1062-1076 ◽  
Author(s):  
Matteo Marchionni ◽  
Giuseppe Bianchi ◽  
Apostolos Karvountzis-Kontakiotis ◽  
Apostolos Pesyridis ◽  
Savvas A. Tassou

Sign in / Sign up

Export Citation Format

Share Document