scholarly journals A study of the transient processes in the physical model of the electric power systems with predominant part of the renewable energy sources

2021 ◽  
Vol 286 ◽  
pp. 02009
Author(s):  
Ivaylo Nedelchev ◽  
Hristo Zhivomirov ◽  
Yoncho Kamenov

The renewable energy take part in the most of the electric power systems in the modern world. The part of this type of energy in the global electric power system, as well as in the local scale, increases with the setting the stricter requirements for decreasing the level of the carbon dioxide emissions. This is the result of the newest international conventions and decision for saving the nature. By these conditions, the electric power systems are forced to work with more different types of energy sources: wind power, photovoltaic, biomass plants etc. Switching of such miscellaneous power sources, leads to complicated transient processes, which are developed due to specific electrical parameters, especially harmonic components, of the synchronous generators, photovoltaic and wind power plants. This paper represents data from measurements of the transient processes into the physical model of the electric power system with predominant part of renewable energy and assesses the applicability of the model. For conducting this study, the multichannel DAQ measurement system is used.

2018 ◽  
Vol 55 (2) ◽  
pp. 3-10
Author(s):  
A. Obushevs ◽  
A. Mutule

Abstract The paper focuses on the application of synchrophasor measurements that present unprecedented benefits compared to SCADA systems in order to facilitate the successful transformation of the Nordic-Baltic-and-European electric power system to operate with large amounts of renewable energy sources and improve situational awareness of the power system. The article describes new functionalities of visualisation tools to estimate a grid inertia level in real time with monitoring results between Nordic and Baltic power systems.


Vestnik IGEU ◽  
2020 ◽  
pp. 25-38
Author(s):  
S.G. Obukhov ◽  
G.N. Klimova ◽  
A. Ibrahim

One of the promising ways to improve the reliability and efficiency of power supply for customers in the areas remote from central electrical grid is the use of hybrid power systems with renewable energy sources. The primary task of designing such systems is the unit commitment of the generating equipment that provides the optimal technical and economic indexes of the electric power system. The stochastic nature of generation and nonlinearity of the characteristics of power plants cause a high complexity of solving this problem, which, from a mathematical point of view, is formulated as an optimization problem. An accurate and reliable solution of this optimization problem increases the efficiency of design and operation of hybrid electric power systems with renewable energy sources. And it is a vital task of modern power industry. A probabilistic-statistical methods and models for the analysis of experimental data are used to construct climatic time series and graphs of electrical loads. In addition, to study the operating modes of the electric power system the MatLab system is used for the simulation and modeling, and an evolutionary particle swarm algorithm is used to solve the optimization problem. The original model of solar radiation is used as a part of this methodology. This model provides forecasting the key characteristics of solar radiation in any geographical point of Russia including the areas that have no results of routine actinometric observation. Weibull distribution function is used to forecast daily variations of wind speed. It enhances the validity of forecasting of electricity generation of wind-driven power plant at daily time interval. As a result of the research, a method of optimum unit commitment has been developed for the equipment of electric power systems based on renewable energy sources. The use of the particle swarm algorithm as a part of the methodology provides reliable and accurate determination of the extremum of the objective function, which increases the efficiency of design and operation of hybrid electric power systems with renewable energy sources. The method has been tested on practical examples of optimum unit commitment for the equipment of electric power systems of various configurations and has proven its effectiveness. The technique is implemented as a software application, which ensures the convenience of its practical application. The obtained results can be used by companies involved in the design and operation of electric power systems using renewable energy generating units.


2021 ◽  
Vol 13 (22) ◽  
pp. 12919
Author(s):  
Vadim A. Golubev ◽  
Viktoria A. Verbnikova ◽  
Ilia A. Lopyrev ◽  
Daria D. Voznesenskaya ◽  
Rashid N. Alimov ◽  
...  

The development of the world’s electric power systems goes back over a century. During this period, the overwhelming majority of states have formed stable, typically centralized systems for generation, transmission, and distribution of electrical energy. At the same time, technologies, primarily for energy generation, are steadily developing, which leads to the emergence of potentially effective technological solutions based on fundamentally new energy sources. The most rapidly expanding group at the moment are renewable energy sources (RES). This fact is due to the significant coverage of the potential environmental and economic benefits of using technologies based on RES in the information environment. At the same time, the process of transformation of traditional electric power systems, by integrating generation technologies based on the use of renewable energy sources, is extremely resource-intensive, and also potentially reducing the level of sustainability and efficiency of the entire system functioning as a whole. This thesis is primarily true for exclusively centralized power systems. The purpose of this study is to create a forecasting model for the development of non-conventional renewable energy sources (NCRES) for short, medium, and long term, which makes it possible to form an action plan to ensure a reliable and uninterrupted supplying of consumers, taking into account the existing electric power system. The developed model made it possible to identify the most promising directions of NCRES from the integration point of view, and for them the quantification and clustering of the information environment was carried out, which made it possible to identify key trends and the specifics of the development of technological solutions for these directions of renewable energy sources. The developed tool and systemic conclusions formulated on the basis of its application make it possible to develop mathematically sound solutions in the direction of managing the development of traditional electric power systems based on the integration of NCRES.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2862
Author(s):  
Mika Korkeakoski

Renewable Energy Sources (RES) have become increasingly desirable worldwide in the fight against global climate change. The sharp decrease in costs of especially wind and solar photovoltaics (PV) have created opportunities to move from dependency on conventional fossil fuel-based electricity production towards renewable energy sources. Renewables experience around 7% (in 2018) annual growth rate in the electricity production globally and the pace is expected to further increase in the near future. Cuba is no exception in this regard, the government has set an ambitious renewable energy target of 24% RES of electricity production by the year 2030. The article analyses renewable energy trajectories in Isla de la Juventud, Cuba, through different future energy scenarios utilizing EnergyPLAN tool. The goal is to identify the best fit and least cost options in transitioning towards 100% electric power systemin Isla de la Juventud, Cuba. The work is divided into analysis of (1) technical possibilities for five scenarios in the electricity production with a 40% increase of electricity consumption by 2030: Business As Usual (BAU 2030, with the current electric power system (EPS) setup), VISION 2030 (according to the Cuban government plan with 24% RES), Advanced Renewables (ARES, with 50% RES), High Renewables (HiRES, with 70% RES), and Fully Renewables (FullRES, with 100% RES based electricity system) scenarios and (2) defining least cost options for the five scenarios in Isla de la Juventud, Cuba. The results show that high penetration of renewables is technically possible even up to 100% RES although the best technological fit versus least cost options may not favor the 100% RES based systems with the current electric power system (EPS) setup. This is due to realities in access to resources, especially importation of state of the art technological equipment and biofuels, financial and investment resources, as well as the high costs of storage systems. The analysis shows the Cuban government vision of reaching 24% of RES in the electricity production by 2030 can be exceeded even up to 70% RES based systems with similar or even lower costs in the near future in Isla de la Juventud. However, overcoming critical challenges in the economic, political, and legal conditions are crucially important; how will the implementation of huge national capital investments and significant involvement of Foreign Direct Investments (FDI) actualize to support achievement of the Cuban government’s 2030 vision?


2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


2019 ◽  
Vol 24 ◽  
pp. 02012
Author(s):  
Yury Shornikov ◽  
Evgeny Popov

Transients in electric power systems are of great interest to power engineers when designing a new or maintaining an existing system. The paper deals with using hybrid system theory for modeling and simulation of an electric power system with controllers. The presented technique is rather convenient and recommended as mathematical models of transients in electric power systems with controllers in general contain both continuous and discrete components. The modeling and simulation were carried out in the modeling and simulation environment ISMA, which is briefly presented in the paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Agustín Flores ◽  
Eduardo Quiles ◽  
Emilio García ◽  
Francisco Morant ◽  
Antonio Correcher

This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.


Sign in / Sign up

Export Citation Format

Share Document