scholarly journals Metallized ceramic substrate with mesa structure for voltage ramp-up of power modules

2019 ◽  
Vol 87 (2) ◽  
pp. 20903 ◽  
Author(s):  
Hélène Hourdequin ◽  
Lionel Laudebat ◽  
Marie-Laure Locatelli ◽  
Zarel Valdez-Nava ◽  
Pierre Bidan

As the available wide bandgap semiconductors continuingly increase their operating voltages, the electrical insulation used in their packaging is increasingly constrained. More precisely the ceramic substrate, used in demanding applications, represents a key multi-functional element is being in charge of the mechanical support of the metallic track that interconnects the semiconductor chips with the rest of the power system, as well as of electrical insulation and of thermal conduction. In this complex assembly, the electric field enhancement at the triple junction between the ceramic, the metallic track borders and the insulating environment is usually a critical point. When the electrical field at the triple point exceeds the critical value allowed by the insulation system, this hampers the device performance and limits the voltage rating for future systems. The solution proposed here is based on the shape modification of the ceramic substrate by creating a mesa structure (plateau) that holds the metallic tracks in the assembly. A numerical simulation approach is used to optimize the structure. After the elaboration of the structures by ultrasonic machining we observed a significant increase (30%) in the partial discharge detection voltages, at 10 pC sensitivity, in a substrate with a mesa structure when comparing to a conventional metallized ceramic substrate.

2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000402-000406
Author(s):  
B. Passmore ◽  
J. Hornberger ◽  
B. McPherson ◽  
J. Bourne ◽  
R. Shaw ◽  
...  

A high temperature, high performance power module was developed for extreme environment systems and applications to exploit the advantages of wide bandgap semiconductors. These power modules are rated > 1200V, > 100A, > 250 °C, and are designed to house any SiC or GaN device. Characterization data of this power module housing trench MOSFETs is presented which demonstrates an on-state current of 1500 A for a full-bridge switch position. In addition, switching waveforms are presented that exhibit fast transition times.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Mei-Chien Lu

Abstract Silicon carbide (SiC) wide bandgap power electronics are being applied in hybrid electric vehicle (HEV) and electrical vehicles (EV). The Department of Energy (DOE) has set target performance goals for 2025 to promote EV and HEV as a means of carbon emission reduction and long-term sustainability. Challenges include higher expectations on power density, performance, efficiency, thermal management, compactness, cost, and reliability. This study will benchmark state of the art silicon and SiC technologies. Power modules used in commercial traction inverters are analyzed for their within-package first-level interconnect methods, module architecture, and integration with cooling structure. A few power module package architectures from both industry-adopted standards and proposed patented technologies are compared in modularity and scalability for integration into inverters. The current trends of power module architectures and their integration into inverter are also discussed. The development of an eco-system to support the wide bandgap semiconductors-based power electronics is highlighted as an ongoing challenge.


2015 ◽  
Vol 2015 ◽  
pp. 1-2
Author(s):  
Meiyong Liao ◽  
Thomas Stergiopoulos ◽  
Jose Alvarez ◽  
Surojit Chattopadhyay ◽  
Guihua Zhang

Sign in / Sign up

Export Citation Format

Share Document