scholarly journals Connection Between Internal Structural Stresses of the Istand the IIndkind and Operational Reliability of the Boiler Heating Surface

2016 ◽  
Vol 110 ◽  
pp. 01037 ◽  
Author(s):  
Lyudmila Lyubimova ◽  
Roman Tabakaev ◽  
Alexander Tashlykov ◽  
Alexander Zavorin ◽  
Vadim Zyubanov
2020 ◽  
Vol 64 (1-4) ◽  
pp. 1461-1468
Author(s):  
Ting Dong ◽  
Juyan Huang ◽  
Bing Peng ◽  
Ling Jian

The calculation accuracy of unbalanced magnetic forces (UMF) is very important to the design of rotor length, because it will effect the shaft deflection. But in some permanent magnet synchronous motors (PMSMs) with fractional slot concentrated windings (FSCW), the UMF caused by asymmetrical stator topology structure is not considered in the existing deflection calculation, which is very fatal for the operational reliability, especially for the PMSMs with the large length-diameter ratio, such as submersible PMSMs. Therefore, the part of UMF in the asymmetrical stator topology structure PMSMs caused by the choice of pole-slot combinations is analysized in this paper, and a more accurate rotor deflection calculation method is also proposed.


Author(s):  
V.N. Moraru

The results of our work and a number of foreign studies indicate that the sharp increase in the heat transfer parameters (specific heat flux q and heat transfer coefficient _) at the boiling of nanofluids as compared to the base liquid (water) is due not only and not so much to the increase of the thermal conductivity of the nanofluids, but an intensification of the boiling process caused by a change in the state of the heating surface, its topological and chemical properties (porosity, roughness, wettability). The latter leads to a change in the internal characteristics of the boiling process and the average temperature of the superheated liquid layer. This circumstance makes it possible, on the basis of physical models of the liquids boiling and taking into account the parameters of the surface state (temperature, pressure) and properties of the coolant (the density and heat capacity of the liquid, the specific heat of vaporization and the heat capacity of the vapor), and also the internal characteristics of the boiling of liquids, to calculate the value of specific heat flux q. In this paper, the difference in the mechanisms of heat transfer during the boiling of single-phase (water) and two-phase nanofluids has been studied and a quantitative estimate of the q values for the boiling of the nanofluid is carried out based on the internal characteristics of the boiling process. The satisfactory agreement of the calculated values with the experimental data is a confirmation that the key factor in the growth of the heat transfer intensity at the boiling of nanofluids is indeed a change in the nature and microrelief of the heating surface. Bibl. 20, Fig. 9, Tab. 2.


2019 ◽  
pp. 59-65 ◽  
Author(s):  
V.A. Yudakov ◽  
◽  
S.D. Fan ◽  
I.A. Fan ◽  
M.R. Teregulov ◽  
...  

1993 ◽  
Vol 27 (5-6) ◽  
pp. 93-104 ◽  
Author(s):  
H. Brombach ◽  
C. Xanthopoulos ◽  
H. H. Hahn ◽  
W. C. Pisano

In 1987 the first vortex solids separator facility in Germany was installed for combined sewer overflow (CSO) control. The separation efficiency was optimized in the hydraulic laboratory using scaled down models with artificial tracers to simulate typical sewage particulates. The station has two parallel operating vortex separators and serves a connected and impervious area of about 11 hectares (ha) and 1,500 people. The specific storage volume of the station is 7.2 m3 per ha. Two evaluation programs were conducted. The first evaluation phase noted the operational reliability, hydraulic loads, overflow frequencies and water mass balances. The second phase monitored separation efficiencies. The evaluation showed that vortex solids separators are now ready for use in CSO control.


Sign in / Sign up

Export Citation Format

Share Document