Influence of unbalanced magnetic force on shaft deflection in permanent magnet synchronous motor with fractional slot concentrated windings

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1461-1468
Author(s):  
Ting Dong ◽  
Juyan Huang ◽  
Bing Peng ◽  
Ling Jian

The calculation accuracy of unbalanced magnetic forces (UMF) is very important to the design of rotor length, because it will effect the shaft deflection. But in some permanent magnet synchronous motors (PMSMs) with fractional slot concentrated windings (FSCW), the UMF caused by asymmetrical stator topology structure is not considered in the existing deflection calculation, which is very fatal for the operational reliability, especially for the PMSMs with the large length-diameter ratio, such as submersible PMSMs. Therefore, the part of UMF in the asymmetrical stator topology structure PMSMs caused by the choice of pole-slot combinations is analysized in this paper, and a more accurate rotor deflection calculation method is also proposed.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2532 ◽  
Author(s):  
Jiabao Wang ◽  
Shoudao Huang ◽  
Chao Guo ◽  
Yaojing Feng

The general method to suppress the axial force of the permanent magnet synchronous motor (PMSM) direct-drive turbine is to increase the number of balance devices, such as balance disks and special bearings, to counteract its influence, but this also leads to complex system structure and higher mechanical losses. Aiming to solve the above issue, this paper presents a novel PMSM structure with a conical-rotor (CR). Due to its adaptive equilibrium of axial force and simple structure of rotor with turbine, the CR-PMSM can help improve the system efficiency. Both surface-type and interior-type motors are analyzed, and the axial magnetic force of CR-PMSM is studied in detail. The 3-D finite-element method (FEM) is used to model and simulate the machine, and the magnetic-field distribution, axial magnetic force and driving performance are obtained. Also, the control rule of d-axis current is analyzed to achieve the adaptive equilibrium of axial force. A 2.0 kW, 6000 r/min prototype motor is fabricated and tested to validate the theory.


2014 ◽  
Vol 998-999 ◽  
pp. 607-612
Author(s):  
Xiang Tang ◽  
Jun Gu ◽  
Ting Gao Qin

In this paper, a method of direct torque control (DTC) for permanent magnet synchronous motor (PMSM) based on fuzzy regulator is proposed. It overcomes the disadvantages such as speed drop with load, torque ripple etc., which happens in the DTC for PMSM based on conventional PI regulator. The simulation results show that, the DTC for PMSM based on fuzzy regulator can effectively improve the system loading capability and significantly reduce the torque ripple and the harmonic content of the system. Therefore, it can comprehensively improve the system performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Long Sheng ◽  
Dapeng Li ◽  
Yue Ji

The servo system of a permanent-magnet synchronous motor usually consists of current, speed, and position loops. Compared with conventional PI control, finite-control-set model predictive control (FCS-MPC) has the advantage of fast response. Conventional FCS-MPC relies on the precise parameters of system model and has large current ripple. To address that problem, this paper proposed an improved FCS-MPC based on duty ratio optimization in synchronous rotating reference frame. To get more precise voltage vector, the proposed FCS-MPC selects the optimal vector combination and, respectively, calculates the time duration. Moreover, feedback correction is also applied to improve the robustness of the control strategy. The simulation results validate the effectiveness of the algorithm.


Author(s):  
Xin Wang ◽  
C. Steve Suh

Permanent magnet synchronous motors are essential components in a wide range of applications in which their unique benefits are explored. However, in order for a permanent magnet synchronous motor to achieve satisfactory performance, particular control frameworks are essential. After all, permanent magnet synchronous motor is an AC machine, which is characterized by its complex structure and strongly coupled system states. Therefore, in order for it to achieve satisfactory dynamic performance, advanced control techniques are the only solution. This paper presents a precise speed control of permanent magnet synchronous motors using the nonlinear time-frequency control concept. The novel aspect of this nonlinear time-frequency control, which is an integration of discrete wavelet transformation and adaptive control, is its ability in analyzing the fundamental temporal and spectral qualities inherent of a permanent magnet synchronous motor and exerting control signals accordingly. Simulation results verifies that the proposed nonlinear time-frequency control scheme is feasible for alleviating the nonlinear behavior of the permanent magnet synchronous motor which hampers the tracking of speed with desired precision.


2011 ◽  
Vol 48-49 ◽  
pp. 292-299 ◽  
Author(s):  
Wei Xue ◽  
Yan Ling Guo ◽  
Yong Li Li

The permanent magnet synchronous motor (PMSM), a nonlinear dynamic system, can exhibit prominent chaotic characteristics under some choices of system parameters and external inputs. Based on a mathematical model of the permanent magnet synchronous motor, the existence of chaotic attractor is verified by the phase trajectory, Lyapunov exponent map and the bifurcation diagram. Chaotic phenomenon, such as a strong oscillation of speed and torque, unstable operating performance, affects the normal operation of motor. It makes the PMSM in a stable state to control chaos of the PMSM with a control strategy of infinitesimal geometry, which can eliminate chaos well.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012096
Author(s):  
Ying Chen ◽  
Dongdong Chen ◽  
Zongwei Li ◽  
Hongdan Lei ◽  
Hongguan Zhu

Abstract This paper first explains the necessity of off-line parameter identification of permanent magnet synchronous motors, and then introduces the identification methods and principles of the stator resistance, stator d/q axis inductance and back-EMF coefficient of permanent magnet synchronous motors. An identification method of stator d/q axis inductance injected with high frequency voltage is proposed. Finally, based on the MBD development model, the proposed identification method is modeled by Matlab/Simulink and the code is generated for experiments. The results verified the accuracy and feasibility of the proposed method well.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Cuimei Jiang ◽  
Shutang Liu

This paper discusses synchronization and antisynchronization of N-coupled complex permanent magnet synchronous motors systems with ring connection. Based on the direct design method and antisymmetric structure, the appropriate controllers are designed to ensure the occurrence of synchronization and antisynchronization in an array of N-coupled general complex chaotic systems described by a unified mathematical expression with ring connection. The proposed method is flexible and is suitable both for design and for implementation in practice. Numerical results are plotted to show the rapid convergence of errors to zero and further verify the effectiveness and feasibility of the theoretical scheme.


Author(s):  
Cezary Jedryczka ◽  
Wojciech Szelag ◽  
Zbigniew Jerry Piech

Purpose The purpose of this paper is to investigate advantages of multiphase permanent magnet synchronous motors (PMSM) with fractional slot concentrated windings (FSCW). The investigation is based on comparative analysis and assessment of FSCW PMSM wound as 3, 6, 9 and 12 phase machines suited for low speed applications. Design/methodology/approach The investigations are focussed on distortions of back electromotive (emf) and magnetomotive force (mmf) with the torque ripples and motors’ performance taken into account. The finite element models with the aid of customized computer code have been adopted for motor winding design and back emf, mmf and motor performance analyses. Findings The novel multiphase winding layouts were found to offer lower content of sub-harmonics in the mmf waveforms compared with the traditional three-phase machine designs. Moreover, the investigated multiphase machines exhibited higher average value of the electromagnetic torque, while the multiphase PMSM machines with FSCW were further characterized by significantly lower torque pulsations. Originality/value The analyses presented in this paper demonstrate that PMSM with FSCW are advantageous to their counterpart three-phase machines. Specifically, they offer higher performance and are more suitable to work with multiple drives supplying segmented winding system. This ability of using multi-drive supply for one motor offers flexibility and cost reduction while increasing fault tolerant power train system.


Sign in / Sign up

Export Citation Format

Share Document