scholarly journals Laser Remote Sensing from ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

2016 ◽  
Vol 119 ◽  
pp. 04012 ◽  
Author(s):  
Sharon Rodier ◽  
Steve Palm ◽  
Mark Vaughan ◽  
John Yorks ◽  
Matt McGill ◽  
...  
1985 ◽  
Author(s):  
Dennis K. Killinger ◽  
Norman Menyuk ◽  
Aram Mooradian

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4118
Author(s):  
Leonardo F. Arias-Rodriguez ◽  
Zheng Duan ◽  
José de Jesús Díaz-Torres ◽  
Mónica Basilio Hazas ◽  
Jingshui Huang ◽  
...  

Remote Sensing, as a driver for water management decisions, needs further integration with monitoring water quality programs, especially in developing countries. Moreover, usage of remote sensing approaches has not been broadly applied in monitoring routines. Therefore, it is necessary to assess the efficacy of available sensors to complement the often limited field measurements from such programs and build models that support monitoring tasks. Here, we integrate field measurements (2013–2019) from the Mexican national water quality monitoring system (RNMCA) with data from Landsat-8 OLI, Sentinel-3 OLCI, and Sentinel-2 MSI to train an extreme learning machine (ELM), a support vector regression (SVR) and a linear regression (LR) for estimating Chlorophyll-a (Chl-a), Turbidity, Total Suspended Matter (TSM) and Secchi Disk Depth (SDD). Additionally, OLCI Level-2 Products for Chl-a and TSM are compared against the RNMCA data. We observed that OLCI Level-2 Products are poorly correlated with the RNMCA data and it is not feasible to rely only on them to support monitoring operations. However, OLCI atmospherically corrected data is useful to develop accurate models using an ELM, particularly for Turbidity (R2=0.7). We conclude that remote sensing is useful to support monitoring systems tasks, and its progressive integration will improve the quality of water quality monitoring programs.


2018 ◽  
Vol 11 (1) ◽  
pp. 499-514 ◽  
Author(s):  
Travis D. Toth ◽  
James R. Campbell ◽  
Jeffrey S. Reid ◽  
Jason L. Tackett ◽  
Mark A. Vaughan ◽  
...  

Abstract. Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (2007–2008 and 2010–2011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called “noise floor”, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and non-all-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT.


2013 ◽  
pp. 175-205
Author(s):  
Antonella Boselli ◽  
Gianluca Pisani ◽  
N. Spinelli ◽  
Xuan Wang

2020 ◽  
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Nicolas Pascal ◽  
Mark A. Vaughan ◽  
Philippe Dubuisson ◽  
...  

Abstract. Following the release of the Version 4 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data products from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a new version 4 (V4) of the CALIPSO Imaging Infrared Radiometer (IIR) Level 2 data products has been developed. The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter and ice or liquid water path estimates. Dedicated retrievals for water clouds were added in V4, taking advantage of the high sensitivity of the IIR retrieval technique to small particle sizes. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results will be presented in a companion (Part II) paper. To reduce biases at very small emissivities that were made evident in V3, the radiative transfer model used to compute clear sky brightness temperatures over oceans has been updated and tuned for the simulations using MERRA-2 data to match IIR observations in clear sky conditions. Furthermore, the clear-sky mask has been refined compared to V3 by taking advantage of additional information now available in the V4 CALIOP 5-km layer products used as an input to the IIR algorithm. After sea surface emissivity adjustments, observed and computed brightness temperatures differ by less than ± 0.2 K at night for the three IIR channels centered at 08.65, 10.6, and 12.05 µm, and inter-channel biases are reduced from several tens of Kelvin in V3 to less than 0.1 K in V4. We have also aimed at improving retrievals in ice clouds having large optical depths by refining the determination of the radiative temperature needed for emissivity computation. The initial V3 estimate, namely the cloud centroid temperature derived from CALIOP, is corrected using a parameterized function of temperature difference between cloud base and top altitudes, cloud absorption optical depth, and the CALIOP multiple scattering correction factor. As shown in Part II, this improvement reduces the low biases at large optical depths that were seen in V3, and increases the number of retrievals in dense ice clouds. As in V3, the IIR microphysical retrievals use the concept of microphysical indices applied to the pairs of IIR channels at 12.05 μm and 10.6 μm and at 12.05 μm and 08.65 μm. The V4 algorithm uses ice look-up tables (LUTs) built using two ice crystal models from the recent TAMUice 2016 database, namely the single hexagonal column model and the 8-element column aggregate model, from which bulk properties are synthesized using a gamma size distribution. Four sets of effective diameters derived from a second approach are also reported in V4. Here, the LUTs are analytical functions relating microphysical index applied to IIR channels 12.05 µm and 10.6 µm and effective diameter as derived from in situ measurements at tropical and mid-latitudes during the TC4 and SPARTICUS field experiments.


2002 ◽  
Vol 41 (24) ◽  
pp. 5078 ◽  
Author(s):  
Sergei N. Volkov ◽  
Bruno V. Kaul ◽  
Dmitri I. Shelefontuk

Sign in / Sign up

Export Citation Format

Share Document