scholarly journals Version 4 CALIPSO IIR ice and liquid water cloud microphysical properties, Part I: the retrieval algorithms

2020 ◽  
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Nicolas Pascal ◽  
Mark A. Vaughan ◽  
Philippe Dubuisson ◽  
...  

Abstract. Following the release of the Version 4 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data products from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a new version 4 (V4) of the CALIPSO Imaging Infrared Radiometer (IIR) Level 2 data products has been developed. The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter and ice or liquid water path estimates. Dedicated retrievals for water clouds were added in V4, taking advantage of the high sensitivity of the IIR retrieval technique to small particle sizes. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results will be presented in a companion (Part II) paper. To reduce biases at very small emissivities that were made evident in V3, the radiative transfer model used to compute clear sky brightness temperatures over oceans has been updated and tuned for the simulations using MERRA-2 data to match IIR observations in clear sky conditions. Furthermore, the clear-sky mask has been refined compared to V3 by taking advantage of additional information now available in the V4 CALIOP 5-km layer products used as an input to the IIR algorithm. After sea surface emissivity adjustments, observed and computed brightness temperatures differ by less than ± 0.2 K at night for the three IIR channels centered at 08.65, 10.6, and 12.05 µm, and inter-channel biases are reduced from several tens of Kelvin in V3 to less than 0.1 K in V4. We have also aimed at improving retrievals in ice clouds having large optical depths by refining the determination of the radiative temperature needed for emissivity computation. The initial V3 estimate, namely the cloud centroid temperature derived from CALIOP, is corrected using a parameterized function of temperature difference between cloud base and top altitudes, cloud absorption optical depth, and the CALIOP multiple scattering correction factor. As shown in Part II, this improvement reduces the low biases at large optical depths that were seen in V3, and increases the number of retrievals in dense ice clouds. As in V3, the IIR microphysical retrievals use the concept of microphysical indices applied to the pairs of IIR channels at 12.05 μm and 10.6 μm and at 12.05 μm and 08.65 μm. The V4 algorithm uses ice look-up tables (LUTs) built using two ice crystal models from the recent TAMUice 2016 database, namely the single hexagonal column model and the 8-element column aggregate model, from which bulk properties are synthesized using a gamma size distribution. Four sets of effective diameters derived from a second approach are also reported in V4. Here, the LUTs are analytical functions relating microphysical index applied to IIR channels 12.05 µm and 10.6 µm and effective diameter as derived from in situ measurements at tropical and mid-latitudes during the TC4 and SPARTICUS field experiments.

2021 ◽  
Vol 14 (5) ◽  
pp. 3253-3276 ◽  
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Nicolas Pascal ◽  
Mark A. Vaughan ◽  
Philippe Dubuisson ◽  
...  

Abstract. Following the release of the version 4 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data products from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a new version (version 4; V4) of the CALIPSO Imaging Infrared Radiometer (IIR) Level 2 data products has been developed. The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter and ice or liquid water path estimates. Dedicated retrievals for water clouds were added in V4, taking advantage of the high sensitivity of the IIR retrieval technique to small particle sizes. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results will be presented in a companion (Part II) paper. The IIR Level 2 algorithm has been modified in the V4 data release to improve the accuracy of the retrievals in clouds of very small (close to 0) and very large (close to 1) effective emissivities. To reduce biases at very small emissivities that were made evident in V3, the radiative transfer model used to compute clear-sky brightness temperatures over oceans has been updated and tuned for the simulations using Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) data to match IIR observations in clear-sky conditions. Furthermore, the clear-sky mask has been refined compared to V3 by taking advantage of additional information now available in the V4 CALIOP 5 km layer products used as an input to the IIR algorithm. After sea surface emissivity adjustments, observed and computed brightness temperatures differ by less than ±0.2 K at night for the three IIR channels centered at 08.65, 10.6, and 12.05 µm, and inter-channel biases are reduced from several tens of Kelvin in V3 to less than 0.1 K in V4. We have also improved retrievals in ice clouds having large emissivity by refining the determination of the radiative temperature needed for emissivity computation. The initial V3 estimate, namely the cloud centroid temperature derived from CALIOP, is corrected using a parameterized function of temperature difference between cloud base and top altitudes, cloud absorption optical depth, and CALIOP multiple scattering correction factor. As shown in Part II, this improvement reduces the low biases at large optical depths that were seen in V3 and increases the number of retrievals. As in V3, the IIR microphysical retrievals use the concept of microphysical indices applied to the pairs of IIR channels at 12.05 and 10.6 µm and at 12.05 and 08.65 µm. The V4 algorithm uses ice look-up tables (LUTs) built using two ice habit models from the recent “TAMUice2016” database, namely the single-hexagonal-column model and the eight-element column aggregate model, from which bulk properties are synthesized using a gamma size distribution. Four sets of effective diameters derived from a second approach are also reported in V4. Here, the LUTs are analytical functions relating microphysical index applied to IIR channels 12.05 and 10.6 µm and effective diameter as derived from in situ measurements at tropical and midlatitudes during the Tropical Composition, Cloud, and Climate Coupling (TC4) and Small Particles in Cirrus Science and Operations Plan (SPARTICUS) field experiments.


2020 ◽  
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Nicolas Pascal ◽  
Mark A. Vaughan ◽  
Philippe Dubuisson ◽  
...  

Abstract. Following the release of the Version 4 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data products from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a new version 4 (V4) of the CALIPSO Imaging Infrared Radiometer (IIR) Level 2 data products has been developed. The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part II) shows retrievals over ocean and describes the improvements made with respect to version (V3) as a result of the significant changes implemented in the V4 algorithms, which are presented in a companion paper (Part I). The analysis of the three-channel IIR observations (08.65 μm, 10.6 μm, and 12.05 μm) is informed by the scene classification provided in the V4 CALIOP 5-km cloud layer and aerosol layer products. Thanks to the reduction of inter-channel effective emissivity biases in semi-transparent (ST) clouds when the oceanic background radiance is derived from model computations, the number of unbiased emissivity retrievals is increased by a factor 3 in V4. In V3, these biases caused inconsistencies between the effective diameters retrieved from the 12/10 and 12/08 pairs of channels at emissivities smaller than 0.5. In V4, microphysical retrievals in ST ice clouds are possible in more than 80 % of the pixels down to effective emissivities of 0.05 (or visible optical depth ~ 0.1). For the month of January 2008 chosen to illustrate the results, median ice De and ice water path (IWP) are, respectively, 38 µm and 3 g⋅m−2 in ST clouds, with random uncertainty estimates of 50 %. The relationship between the V4 IIR 12/10 and 12/08 microphysical indices is in better agreement with the severely roughened single column ice crystal model than with the severely roughened 8-element aggregate model for 80 % of the pixels in the coldest clouds ( 230 K). Retrievals in opaque ice clouds are improved in V4, especially at night and for 12/10 pair of channels, owing to corrections of the V3 radiative temperature estimates derived from CALIOP geometric altitudes. Median ice De and IWP are 58 µm and 97 g⋅m−2 at night in opaque clouds, with again random uncertainty estimates of 50 %. Comparisons of ice retrievals with Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) in the tropics show a better agreement of IIR De with MODIS visible/3.7 µm than with MODIS visible/2.1 µm in the coldest ST clouds and the opposite for opaque clouds. In prevailingly supercooled liquid water clouds with centroid altitudes above 4 km, retrieved median De and liquid water path are 13 µm and 3.4 g.m−2 in ST clouds, with estimated random uncertainties of 45 % and 35 % respectively. In opaque liquid clouds, these values are 18 µm and 31 g.m−2 at night, with estimated uncertainties of 50 %. IIR De in opaque liquid clouds is smaller than MODIS visible/2.1 and visible/3.7 by 8 µm and 3 µm, respectively.


2021 ◽  
Vol 14 (5) ◽  
pp. 3277-3299
Author(s):  
Anne Garnier ◽  
Jacques Pelon ◽  
Nicolas Pascal ◽  
Mark A. Vaughan ◽  
Philippe Dubuisson ◽  
...  

Abstract. Following the release of the version 4 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data products from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a new version 4 (V4) of the CALIPSO Imaging Infrared Radiometer (IIR) Level 2 data products has been developed. The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and water path estimates for ice and liquid clouds. This paper (Part II) shows retrievals over ocean and describes the improvements made with respect to version 3 (V3) as a result of the significant changes implemented in the V4 algorithms, which are presented in a companion paper (Part I). The analysis of the three-channel IIR observations (08.65, 10.6, and 12.05 µm) is informed by the scene classification provided in the V4 CALIOP 5 km cloud layer and aerosol layer products. Thanks to the reduction of inter-channel effective emissivity biases in semi-transparent (ST) clouds when the oceanic background radiance is derived from model computations, the number of unbiased emissivity retrievals is increased by a factor of 3 in V4. In V3, these biases caused inconsistencies between the effective diameters retrieved from the 12/10 (βeff12/10 = τa,12/τa,10) and 12/08 (βeff12/08 = τa,12/τa,08) pairs of channels at emissivities smaller than 0.5. In V4, microphysical retrievals in ST ice clouds are possible in more than 80 % of the pixels down to effective emissivities of 0.05 (or visible optical depth ∼0.1). For the month of January 2008, which was chosen to illustrate the results, median ice De and ice water path (IWP) are, respectively, 38 µm and 3 g m−2 in ST clouds, with random uncertainty estimates of 50 %. The relationship between the V4 IIR 12/10 and 12/08 microphysical indices is in better agreement with the “severely roughened single column” ice habit model than with the “severely roughened eight-element aggregate” model for 80 % of the pixels in the coldest clouds (<210 K) and 60 % in the warmest clouds (>230 K). Retrievals in opaque ice clouds are improved in V4, especially at night and for 12/10 pair of channels, due to corrections of the V3 radiative temperature estimates derived from CALIOP geometric altitudes. Median ice De and IWP are 58 µm and 97 g m−2 at night in opaque clouds, with again random uncertainty estimates of 50 %. Comparisons of ice retrievals with Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua in the tropics show a better agreement of IIR De with MODIS visible–3.7 µm than with MODIS visible–2.1 µm in the coldest ST clouds and the opposite for opaque clouds. In prevailingly supercooled liquid water clouds with centroid altitudes above 4 km, retrieved median De and liquid water path are 13 µm and 3.4 g m−2 in ST clouds, with estimated random uncertainties of 45 % and 35 %, respectively. In opaque liquid clouds, these values are 18 µm and 31 g m−2 at night, with estimated uncertainties of 50 %. IIR De in opaque liquid clouds is smaller than MODIS visible–2.1 µm and visible–3.7 µm by 8 and 3 µm, respectively.


2017 ◽  
Author(s):  
Stephanie P. Rusli ◽  
David P. Donovan ◽  
Herman W. J. Russchenberg

Abstract. Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains non-trivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically-consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parametrization are used in an optimal estimation type framework in order to retrieve the best-estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation output to verify the forward models used in the retrieval procedure and the vertical parametrization of the liquid water content. From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT campaign dataset collected in Cabauw, The Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature, each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud, respectively. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are generally consistent with what is derived using the three independent methods.


2017 ◽  
Vol 10 (12) ◽  
pp. 4777-4803 ◽  
Author(s):  
Stephanie P. Rusli ◽  
David P. Donovan ◽  
Herman W. J. Russchenberg

Abstract. Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud–drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.


2015 ◽  
Vol 8 (5) ◽  
pp. 1935-1949 ◽  
Author(s):  
A. Kylling ◽  
N. Kristiansen ◽  
A. Stohl ◽  
R. Buras-Schnell ◽  
C. Emde ◽  
...  

Abstract. Volcanic ash is commonly observed by infrared detectors on board Earth-orbiting satellites. In the presence of ice and/or liquid-water clouds, the detected volcanic ash signature may be altered. In this paper the sensitivity of detection and retrieval of volcanic ash to the presence of ice and liquid-water clouds was quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The sensitivity study was made for the two recent eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011) using realistic water and ice clouds and volcanic ash clouds. The water and ice clouds were taken from European Centre for Medium-Range Weather Forecast (ECMWF) analysis data and the volcanic ash cloud fields from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer simulations were made both with and without ice and liquid-water clouds for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The synthetic SEVIRI images were used as input to standard reverse absorption ash detection and retrieval methods. Ice and liquid-water clouds were on average found to reduce the number of detected ash-affected pixels by 6–12%. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading >0.2 g m−2 could not be detected due to the presence of water and ice clouds. For coincident pixels, i.e. pixels where ash was both present in the FLEXPART (hereafter referred to as "Flexpart") simulation and detected by the algorithm, the presence of clouds overall increased the retrieved mean mass loading for the Eyjafjallajökull (2010) eruption by about 13%, while for the Grímsvötn (2011) eruption ash-mass loadings the effect was a 4% decrease of the retrieved ash-mass loading. However, larger differences were seen between scenes (standard deviations of ±30 and ±20% for Eyjafjallajökull and Grímsvötn, respectively) and even larger ones within scenes. The impact of ice and liquid-water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, hyperspectral and spectral band measurements by satellite instruments should be combined with ash dispersion modelling.


2015 ◽  
Vol 15 (8) ◽  
pp. 4131-4144 ◽  
Author(s):  
P. Wang ◽  
M. Allaart ◽  
W. H. Knap ◽  
P. Stammes

Abstract. A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling–Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.


2016 ◽  
Author(s):  
Micael A. Cecchini ◽  
Luiz A. T Machado ◽  
Jennifer M. Comstock ◽  
Fan Mei ◽  
Jian Wang ◽  
...  

Abstract. The remote atmosphere over the Amazon can be similar to oceanic regions in terms aerosol conditions and cloud type formations. This is especially true during the wet season. The main aerosol-related disturbances over the Amazon have both natural sources, such as dust transport from Africa, and anthropogenic sources, such as biomass burning or urban pollution. The present work considers the impacts of the latter on the microphysical properties of warm-phase clouds by analyzing observations of the interactions between Manaus city and its surroundings, as part of the GoAmazon2014/5 Experiment. The analyzed period corresponds to the wet season over a tropical rain forest (i.e., Feb to Mar 2014 and corresponding to the first Intensive Operating Period (IOP1) of GoAmazon2014/5), and the droplets observed are in the range 1 μm ≤ D ≤ 50 μm. The wet season largely presents a clean background atmosphere characterized by frequent rain showers. As such, the contrast between background clouds compared to those affected by the Manaus pollution can be observed and detailed. The focus is on the characteristics of the initial microphysical properties in cumulus clouds predominantly at their early stages. The pollution-affected clouds are found to have lower effective diameters and higher droplet number concentrations. The average differences range from 10% to 40% for the effective diameter and are as high as 1000% for droplet concentration across different vertical levels (0 to 3200 m). The growth rates of droplets with altitude are slower for pollution-affected clouds (2.90 compared to 5.59 μm km-1), as explained by the absence of bigger droplets at the onset of cloud development. Clouds under background conditions have higher concentrations of larger d roplets (e.g., > 20 μm) close to cloud base, which would contribute significantly to the growth rates through the collision-coalescence process. The droplet size distribution (DSD) overall shape do not appear to be predominantly determined by updraft strength, especially beyond the 20 μm range. The aerosol conditions play a major role in that case. However, the updrafts modulate the DSD concentrations and are responsible for the vertical transport of water in the cloud. The larger droplets found in background clouds are associated with weak water vapour competition and a bimodal distribution of droplets in the lower levels of the cloud, that enables an earlier initiation of collision-coalescence process. This study shows that the pollution produced by Manaus affects significantly warm-phase microphysical properties of the surrounding clouds by changing the initial DSD formation. The corresponding effects on ice-phase processes and precipitation formation should be the focus of future endeavors.


2018 ◽  
Vol 11 (10) ◽  
pp. 5701-5727 ◽  
Author(s):  
Stuart A. Young ◽  
Mark A. Vaughan ◽  
Anne Garnier ◽  
Jason L. Tackett ◽  
James D. Lambeth ◽  
...  

Abstract. The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been making near-global height-resolved measurements of cloud and aerosol layers since mid-June 2006. Version 4.10 (V4) of the CALIOP data products, released in November 2016, introduces extensive upgrades to the algorithms used to retrieve the spatial and optical properties of these layers, and thus there are both obvious and subtle differences between V4 and previous data releases. This paper describes the improvements made to the extinction retrieval algorithms and illustrates the impacts of these changes on the extinction and optical depth estimates reported in the CALIPSO lidar level 2 data products. The lidar ratios for both aerosols and ice clouds are generally higher than in previous data releases, resulting in generally higher extinction coefficients and optical depths in V4. A newly implemented algorithm for retrieving extinction coefficients in opaque layers is described and its impact examined. Precise lidar ratio estimates are also retrieved in these opaque layers. For semi-transparent cirrus clouds, comparisons between CALIOP V4 optical depths and the optical depths reported by MODIS collection 6 show substantial improvements relative to earlier comparisons between CALIOP version 3 and MODIS collection 5.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Elizaveta Zabolotskikh ◽  
Bertrand Chapron

A new algorithm is derived for rain rate (RR) estimation from Advanced Microwave Sounding Radiometer 2 (AMSR2) measurements taken at 6.9, 7.3, and 10.65 GHz. The algorithm is based on the numerical simulation of brightness temperatures (TB) for AMSR2 lower frequency channels, using a simplified radiation transfer model. Simultaneous meteorological and hydrological observations, supplemented with modeled values of cloud liquid water content and rain rate values, are used for the calculation of an ensemble of AMSR2TBs and RRs. Ice clouds are not taken into account. AMSR2 brightness temperature differences at C- and X-band channels are then used as inputs to train a neural network (NN) function for RR retrieval. Validation is performed against Tropical Rain Measurement Mission (TRMM) Microwave Instrument (TMI) RR products. For colocated AMSR2-TMI measurements, obtained within 10 min intervals, errors are about 1 mm/h. The new algorithm is applicable for RR estimation up to 20 mm/h. ForRR<2 mm/h the retrieval error is 0.3 mm/h. ForRR>10 mm/h the algorithm significantly underestimates TMI RR.


Sign in / Sign up

Export Citation Format

Share Document