scholarly journals Missed radiative corrections in muon g-2 and proton charge radius measurements

2016 ◽  
Vol 125 ◽  
pp. 04005
Author(s):  
Andrej Arbuzov ◽  
Tatiana Kopylova
Nature ◽  
2019 ◽  
Vol 575 (7781) ◽  
pp. 147-150 ◽  
Author(s):  
W. Xiong ◽  
A. Gasparian ◽  
H. Gao ◽  
D. Dutta ◽  
M. Khandaker ◽  
...  

2011 ◽  
Vol 107 (1) ◽  
Author(s):  
Brian Batell ◽  
David McKeen ◽  
Maxim Pospelov

2007 ◽  
Vol 59 (1) ◽  
pp. 358-360
Author(s):  
S. Rathi ◽  
I. Pysmenetska ◽  
P. von Neumann-Cosel ◽  
A. Richter ◽  
G. Schrieder ◽  
...  

2019 ◽  
Author(s):  
Nassim Haramein

We consider the latest results of the measurement of the charge radius of the proton utilizing laser spectroscopy of muonic hydrogen published in Science on January 25, 2013 by an international team lead by Aldo Antognini and carried out at the Paul Scherrer Institute Proton Accelerator. Given the new charge radius measurement, we compute the proton mass utilizing our generalized holographic approach and find that our result is now within 0.00072x10e-24 g of the 2010-CODATA value of the proton rest mass. Our predicted charge radius is now within 0.00036x10e-13 cm and remains within one standard deviation of the new measurement.


2005 ◽  
Vol 83 (4) ◽  
pp. 339-349 ◽  
Author(s):  
R Pohl ◽  
A Antognini ◽  
F D Amaro ◽  
F Biraben ◽  
J MR Cardoso ◽  
...  

The charge radius of the proton, the simplest nucleus, is known from electron-scattering experiments only with a surprisingly low precision of about 2%. The poor knowledge of the proton charge radius restricts tests of bound-state quantum electrodynamics (QED) to the precision level of about 6 × 10–6, although the experimental data themselves (1S Lamb shift in hydrogen) have reached a precision of 2 × 10–6. The determination of the proton charge radius with an accuracy of 10–3 is the main goal of our experiment, opening a way to check bound-state QED predictions to a level of 10–7. The principle is to measure the 2S–2P energy difference in muonic hydrogen (µ–p) by infrared laser spectroscopy. The first data were taken in the second half of 2003. Muons from our unique very-low-energy muon beam are stopped at a rate of ~100 s–1 in 0.6 mbar H2 gas where the lifetime of the formed µp(2S) atoms is about 1.3 µs. An incoming muon triggers a pulsed multistage laser system that delivers ~0.2 mJ at λ ≈ 6 µm. Following the laser excitation µp(2S) → µp(2P) we observe the 1.9 keV X-rays from 2P–1S transitions using large area avalanche photodiodes. The resonance frequency, and, hence, the Lamb shift and the proton radius, is determined by measuring the intensity of these X-rays as a function of the laser wavelength. A broad range of laser frequencies was scanned in 2003 and the analysis is currently under way. PACS Nos.: 36.10.Dr, 14.20.Dh, 42.62.Fi


Sign in / Sign up

Export Citation Format

Share Document