scholarly journals Vacuum polarization in the model of Dirac fermions with anomalous magnetic moment interacting with background axial-vector condensate and magnetic field

2016 ◽  
Vol 125 ◽  
pp. 05005
Author(s):  
A.F. Bubnov ◽  
N.V. Gubina ◽  
V. Ch. Zhukovsky
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Wen Qin ◽  
Ling-Yun Dai ◽  
Jorge Portolés

Abstract A coherent study of e+e− annihilation into two (π+π−, K+K−) and three (π+π−π0, π+π−η) pseudoscalar meson production is carried out within the framework of resonance chiral theory in energy region E ≲ 2 GeV. The work of [L.Y. Dai, J. Portolés, and O. Shekhovtsova, Phys. Rev. D88 (2013) 056001] is revisited with the latest experimental data and a joint analysis of two pseudoscalar meson production. Hence, we evaluate the lowest order hadronic vacuum polarization contributions of those two and three pseudoscalar processes to the anomalous magnetic moment of the muon. We also estimate some higher-order additions led by the same hadronic vacuum polarization. Combined with the other contributions from the standard model, the theoretical prediction differs still by (21.6 ± 7.4) × 10−10 (2.9σ) from the experimental value.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850011
Author(s):  
Zeinab Rezaei

In this work, we calculate the neutron anomalous magnetic moment (AMM) supposing that this value can depend on the density and magnetic field of the system. We employ the lowest-order constraint variation (LOCV) method and [Formula: see text] nuclear potential to calculate the medium dependency of the neutron AMM. It is confirmed that the neutron AMM increases by increasing the density, while it decreases as the magnetic field grows. The energy and equation of state for the system have also been investigated.


1976 ◽  
Vol 15 (5) ◽  
pp. 149-152 ◽  
Author(s):  
V. N. Baier ◽  
V. M. Katkov ◽  
V. M. Strakhovenko

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Ken Sasaki

Abstract The contribution to the muon anomalous magnetic moment from the fermion triangle loop diagrams connected to the muon line by a photon and a $Z$ boson is re-analyzed in both the unitary gauge and the ’t Hooft–Feynman gauge. With use of the anomalous axial-vector Ward identity, it is shown that the calculation in the unitary gauge exactly coincides with the one in the ’t Hooft–Feynman gauge. The part which arises from the ordinary axial-vector Ward identity corresponds to the contribution of the neutral Goldstone boson. For the top-quark contribution, the one-parameter integral form is obtained up to the order of $m_\mu^2/m_Z^2$. The results are compared with those obtained by the asymptotic expansion method.


Sign in / Sign up

Export Citation Format

Share Document