scholarly journals D meson production in heavy ion collisions with CMS

2017 ◽  
Vol 141 ◽  
pp. 08004
Author(s):  
Hyunchul Kim
2016 ◽  
Vol 130 ◽  
pp. 05016 ◽  
Author(s):  
Andrzej Rybicki ◽  
Antoni Szczurek ◽  
Mariola Kłusek-Gawenda ◽  
Nikolaos Davis ◽  
Vitalii Ozvenchuk ◽  
...  

2018 ◽  
Vol 171 ◽  
pp. 01003
Author(s):  
Rachid Nouicer

Hadrons conveying strange quarks or heavy quarks are essential probes of the hot and dense medium created in relativistic heavy-ion collisions. With hidden strangeness, ϕ meson production and its transport in the nuclear medium have attracted high interest since its discovery. Heavy quark-antiquark pairs, like charmonium and bottomonium mesons, are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. In this context, the PHENIX collaboration carries out a comprehensive physics program which studies the ϕ meson production, and heavy flavor production in relativistic heavy-ion collisions at RHIC. In recent years, the PHENIX experiment upgraded the detector in installing silicon vertex tracker (VTX) at mid-rapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region. With these new upgrades, the experiment has collected large data samples, and enhanced the capability of heavy flavor measurements via precision tracking. This paper summarizes the latest PHENIX results concerning ϕ meson, open and closed charm and beauty heavy quark production in relativistic heavy-ion collisions. These results are presented as a function of rapidity, energy and system size, and their interpretation with respect to the current theoretical understanding.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 118
Author(s):  
Eszter Frajna ◽  
Róbert Vértesi

The ALICE experiment at the Large Hadron Collider (LHC) ring is designed to study the strongly interacting matter at extreme energy densities created in high-energy heavy-ion collisions. In this paper we investigate correlations of heavy and light flavors in simulations at LHC energies at mid-rapidity, with the primary purpose of proposing experimental applications of these methods. Our studies have shown that investigating the correlation images can aid the experimental separation of heavy quarks and help understanding the physics that create them. The shape of the correlation peaks can be used to separate the electrons stemming from b quarks. This could be a method of identification that, combined with identification in silicon vertex detectors, may provide much better sample purity for examining the secondary vertex shift. Based on a correlation picture it is also possible to distinguish between prompt and late contributions to D meson yields.


Sign in / Sign up

Export Citation Format

Share Document