scholarly journals Forbidden Channels and SIMP Dark Matter

2018 ◽  
Vol 168 ◽  
pp. 06010
Author(s):  
Soo-Min Choi ◽  
Yoo-Jin Kang ◽  
Hyun Min Lee

In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

2017 ◽  
Vol 95 (11) ◽  
Author(s):  
Kunio Kaneta ◽  
Hye-Sung Lee ◽  
Seokhoon Yun

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hassan Firouzjahi ◽  
Mohammad Ali Gorji ◽  
Shinji Mukohyama ◽  
Borna Salehian

Abstract We present a scenario of vector dark matter production during inflation containing a complex inflaton field which is charged under a dark gauge field and which has a symmetry breaking potential. As the inflaton field rolls towards the global minimum of the potential the dark photons become massive with a mass which can be larger than the Hubble scale during inflation. The accumulated energy of the quantum fluctuations of the produced dark photons gives the observed relic density of the dark matter for a wide range of parameters. Depending on the parameters, either the transverse modes or the longitudinal mode or their combination can generate the observed dark matter relic energy density.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Borna Salehian ◽  
Mohammad Ali Gorji ◽  
Hassan Firouzjahi ◽  
Shinji Mukohyama

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Amin Aboubrahim ◽  
Michael Klasen ◽  
Pran Nath

Abstract We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a U(1) extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS.


2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Samuel J. Witte ◽  
Salvador Rosauro-Alcaraz ◽  
Samuel D. McDermott ◽  
Vivian Poulin

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Danny Marfatia ◽  
Po-Yan Tseng

Abstract We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Thomas G. Rizzo ◽  
George N. Wojcik

Abstract Extra dimensions have proven to be a very useful tool in constructing new physics models. In earlier work, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of dark matter, taken to be, e.g., a complex scalar, with the brane-localized fields of the Standard Model (SM) are mediated by a massive U(1)D dark photon living in the bulk. These models were shown to have many novel features differentiating them from their 4-D analogs and which, in several cases, avoided some well-known 4-D model building constraints. However, these gains were obtained at the cost of the introduction of a fair amount of model complexity, e.g., dark matter Kaluza-Klein excitations. In the present paper, we consider an alternative setup wherein the dark matter and the dark Higgs, responsible for U(1)D breaking, are both localized to the ‘dark’ brane at the opposite end of the 5-D interval from where the SM fields are located with only the dark photon now being a 5-D field. The phenomenology of such a setup is explored for both flat and warped extra dimensions and compared to the previous more complex models.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrzej Hryczuk ◽  
Maxim Laletin

Abstract We study a novel dark matter production mechanism based on the freeze-in through semi-production, i.e. the inverse semi-annihilation processes. A peculiar feature of this scenario is that the production rate is suppressed by a small initial abundance of dark matter and consequently creating the observed abundance requires much larger coupling values than for the usual freeze-in. We provide a concrete example model exhibiting such production mechanism and study it in detail, extending the standard formalism to include the evolution of dark matter temperature alongside its number density and discuss the importance of this improved treatment. Finally, we confront the relic density constraint with the limits and prospects for the dark matter indirect detection searches. We show that, even if it was never in full thermal equilibrium in the early Universe, dark matter could, nevertheless, have strong enough present-day annihilation cross section to lead to observable signals.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer ◽  
Wen Yin

Abstract In this paper we present a novel mechanism for producing the observed Dark Matter (DM) relic abundance during the First Order Phase Transition (FOPT) in the early universe. We show that the bubble expansion with ultra-relativistic velocities can lead to the abundance of DM particles with masses much larger than the scale of the transition. We study this non-thermal production mechanism in the context of a generic phase transition and the electroweak phase transition. The application of the mechanism to the Higgs portal DM as well as the signal in the Stochastic Gravitational Background are discussed.


Sign in / Sign up

Export Citation Format

Share Document