scholarly journals The SHiP experiment at CERN

2018 ◽  
Vol 182 ◽  
pp. 02016 ◽  
Author(s):  
Walter M. Bonivento

The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry of the Universe, deserving an explanation that could come from the discovery of new particles. Searches for new physics with accelerators are performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experiment at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. The neutrino detector can also search for dark matter through its scattering off the electrons. We report the physics potential of the SHiP experiment.

2018 ◽  
Vol 179 ◽  
pp. 01002
Author(s):  
Giovanni De Lellis

The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry of the Universe, which deserve an explanation that could come from the discovery of new particles. The SHiP experiment at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. Indeed, tau anti-neutrinos have not been directly observed so far. We report the physics potential of such an experiment including the tau neutrino magnetic moment.


2020 ◽  
Vol 234 ◽  
pp. 01003
Author(s):  
Giovanni De Lellis

The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter, the neutrino masses and the baryon asymmetry of the Universe, which deserve an explanation that could come from the discovery of new particles. The SHiP experiment at CERN is proposed to search for very weakly coupled particles in the few GeV mass domain where the existence of such particles is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a very intense source of neutrinos and, in particular, of tau neutrinos, the less known particle in the Standard Model. We report the physics potential of such an experiment. An ancillary measurement of the charm cross-section was carried out in July 2018 and the data are under analysis and we report preliminary results. Moreover, a prototype of the neutrino detector is being designed to possibly take data at the LHC in its Run3 of operation. We describe the proposed detector and the physics case.


Author(s):  
Martino Borsato ◽  
Xabier Cid-Vidal ◽  
Yuhsin Tsai ◽  
Carlos Vázquez Sierra ◽  
Jose Francisco Zurita ◽  
...  

Abstract In this paper, we describe the potential of the LHCb experiment to detect Stealth physics. This refers to dynamics beyond the Standard Model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.


2007 ◽  
Vol 22 (30) ◽  
pp. 5550-5560
Author(s):  
A. BETTINI

Astroparticle is a very wide, expanding, sector of Physics; this report covers only a fraction of it complementing the plenary reports of Y. Takahashi and K. Inoue. I will focus, in particular, on the experimental evidence of new physics, beyond the Standard Model. Astroparticle and accelerator experiments will give complementary tools in the search of new particles, like those of the dark matter, and new fundamental fields, like the inflaton.


2020 ◽  
Author(s):  
Stephane Maes

In a multi-fold universe, gravity emerges from entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles or regions. When applied to astrophysics, these effects are analogous to additional matter within or around galaxies. This way, we recover behaviors that match expected and observed effects when dark matter would be present or missing. No New Physics is introduced in terms of new particles beyond the Standard Model or modifying long range gravity: only the modeling of gravity as emerging from entanglement, in a multi-fold universe.


2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044005
Author(s):  
Francesco Guescini

Many theories beyond the Standard Model predict new phenomena accessible by the Lhc. Searches for new physics are performed using the Atlas experiment at the Lhc focusing on exotic signatures that are predicted in several theories, excluding supersymmetry. The results of recent searches using 13 TeV data, with the exception of those for Dark Matter signatures, and their interplay and interpretation are presented. Prospects for searches at the High Luminosity Lhc are also discussed.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Peter Athron ◽  
Csaba Balázs ◽  
Douglas H. J. Jacob ◽  
Wojciech Kotlarski ◽  
Dominik Stöckinger ◽  
...  

Abstract The Fermilab Muon g −2 experiment recently reported its first measurement of the anomalous magnetic moment $$ {a}_{\mu}^{\mathrm{FNAL}} $$ a μ FNAL , which is in full agreement with the previous BNL measurement and pushes the world average deviation $$ \Delta {a}_{\mu}^{2021} $$ ∆ a μ 2021 from the Standard Model to a significance of 4.2σ. Here we provide an extensive survey of its impact on beyond the Standard Model physics. We use state-of-the-art calculations and a sophisticated set of tools to make predictions for aμ, dark matter and LHC searches in a wide range of simple models with up to three new fields, that represent some of the few ways that large ∆aμ can be explained. In addition for the particularly well motivated Minimal Supersymmetric Standard Model, we exhaustively cover the scenarios where large ∆aμ can be explained while simultaneously satisfying all relevant data from other experiments. Generally, the aμ result can only be explained by rather small masses and/or large couplings and enhanced chirality flips, which can lead to conflicts with limits from LHC and dark matter experiments. Our results show that the new measurement excludes a large number of models and provides crucial constraints on others. Two-Higgs doublet and leptoquark models provide viable explanations of aμ only in specific versions and in specific parameter ranges. Among all models with up to three fields, only models with chirality enhancements can accommodate aμ and dark matter simultaneously. The MSSM can simultaneously explain aμ and dark matter for Bino-like LSP in several coannihilation regions. Allowing under abundance of the dark matter relic density, the Higgsino- and particularly Wino-like LSP scenarios become promising explanations of the aμ result.


2007 ◽  
Vol 22 (30) ◽  
pp. 5502-5512
Author(s):  
D. I. KAZAKOV

Review of recent developments in attempts to go beyond the Standard Model is given. We concentrate on three main unresolved problems: mechanism of electroweak symmetry breaking, expected new physics at the TeV scale (mainly SUSY) and the origin of the Dark matter.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Johan Alwall ◽  
Jusak Tandean

Dark matter presents perhaps one of the most compelling direct indications of new physics beyond the standard model with three generations of fermions. In this paper, we survey several scenarios for dark matter in association with a fourth generation of chiral matter. The surveyed scenarios include stable heavy neutrino dark matter, composite dark matter consisting of stable heavy quarks, heavy quarks as mediators between the dark and visible sectors, and the four-generation standard model with the minimal addition of a stable real scalar field. We discuss the basic properties of the models, direct search constraints on their dark matter, and their collider phenomenology, as well as the possible effects of dark matter on the searches for a Higgs boson in the presence of four generations. We also comment on the potential implication of the recent observation of a Higgs-like new particle at the LHC.


Sign in / Sign up

Export Citation Format

Share Document