scholarly journals SU(2) Yang-Mills thermodynamics: A priori estimate and radiative corrections

2018 ◽  
Vol 182 ◽  
pp. 02053 ◽  
Author(s):  
Ralf Hofmann

We review and explain essential characteristics of the a priori estimate of the thermal ground state and its excitations in the deconfining phase of SU(2) Quantum Yang-Mills thermodynamics. This includes the spatially central and peripheral structure of Harrington-Shepard (anti)calorons, a sketch on how a spatial coarse-graining over (anti)caloron centers yields an inert scalar field, which is responsible for an adjoint Higgs mechanism, the identification of (anti)caloron action with ħ, a discussion of how, owing to (anti)caloron structure, the thermal ground state can be excited (wave-like and particlelike massless modes, massive thermal quasiparticle fluctuations), the principle role of and accounting for radiative corrections, the exclusion of energy-sign combinations due to constraints on momenta transfers in four-vertices in a completely fixed, physical gauge, dihedral diagrams and their resummation up to infinite loop order in the massive sector, and the resummation of the one-loop polarisation tensor of the massless modes. We also outline applications of deconfining SU(2) Yang-Mills thermodynamics to the Cosmic Microwave Background (CMB) which affect the cosmological model at high redshifts, the redshift for re-ionization of the Universe, the CMB angular power spectra at low l, and the late-time emergence of intergalactic magnetic fields.

2017 ◽  
Vol 32 (19n20) ◽  
pp. 1750118 ◽  
Author(s):  
Ingolf Bischer ◽  
Thierry Grandou ◽  
Ralf Hofmann

We address the loop expansion of the pressure in the deconfining phase of SU(2) Yang–Mills thermodynamics. We devise an efficient book-keeping of excluded energy-sign and scattering-channel combinations for the loop four-momenta associated with massive quasiparticles, circulating in (connected) bubble diagrams subject to vertex constraints inherited from the thermal ground state. These radiative corrections modify the one-loop pressure exerted by free thermal quasiparticles. Increasing the loop order in two-particle irreducible (2PI) bubble diagrams, we exemplarily demonstrate a suppressing effect of the vertex constraints on the number of valid combinations. This increasingly strong suppression gave rise to the conjecture in arXiv:hep-th/0609033 that the loop expansion would terminate at a finite order. Albeit the low-temperature dependence of the 2PI 3-loop diagram complies with this behavior, a thorough analysis of the high-temperature situation reveals that the leading power in temperature is thirteen such that this diagram dominates all lower loop orders for sufficiently high temperatures. An all-loop-order resummation of 2PI diagrams with dihedral symmetry is thus required, defining an extremely well-bounded analytical continuation of the low-temperature result.


Author(s):  
Л.М. Энеева

В работе исследуется обыкновенное дифференциальное уравнение дробного порядка, содержащее композицию дробных производных с различными началами, с переменным потенциалом. Рассматриваемое уравнение выступает модельным уравнением движения во фрактальной среде. Для исследуемого уравнения доказана априорная оценка решения смешанной двухточечной краевой задачи. We consider an ordinary differential equation of fractional order with the composition of leftand right-sided fractional derivatives, and with variable potential. The considered equation is a model equation of motion in fractal media. We prove an a priori estimate for solutions of a mixed two-point boundary value problem for the equation under study.


2018 ◽  
Vol 64 (4) ◽  
pp. 591-602
Author(s):  
R D Aloev ◽  
M U Khudayberganov

We study the difference splitting scheme for the numerical calculation of stable solutions of a two-dimensional linear hyperbolic system with dissipative boundary conditions in the case of constant coefficients with lower terms. A discrete analog of the Lyapunov function is constructed and an a priori estimate is obtained for it. The obtained a priori estimate allows us to assert the exponential stability of the numerical solution.


1999 ◽  
Vol 22 (3) ◽  
pp. 511-519 ◽  
Author(s):  
Said Mesloub ◽  
Abdelfatah Bouziani

In this paper, we study a mixed problem with a nonlocal condition for a class of second order singular hyperbolic equations. We prove the existence and uniqueness of a strong solution. The proof is based on a priori estimate and on the density of the range of the operator generated by the studied problem.


Sign in / Sign up

Export Citation Format

Share Document