scholarly journals Microwave imaging of skin damage at experimental burns

2018 ◽  
Vol 195 ◽  
pp. 08005
Author(s):  
Andrew K. Martusevich ◽  
A.G. Galka ◽  
S.Yu. Krasnova ◽  
A.G. Soloveva
Author(s):  
Shingo Yasuoka ◽  
Jiro Takata ◽  
Yoshiharu Karube ◽  
Eiko Katoh ◽  
Toshi Tsuzuki ◽  
...  

2015 ◽  
Vol 74 (20) ◽  
pp. 1793-1801
Author(s):  
Sidi Mohammed Chouiti ◽  
Lotfi Merad ◽  
Sidi Mohammed Meriah ◽  
Xavier Raimundo

1979 ◽  
Vol 41 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Masakazu ASAHI ◽  
Harukuni URABE

Author(s):  
Renato Cicchetti ◽  
Valentina Cicchetti ◽  
Sandra Costanzo ◽  
Paolo D'Atanasio ◽  
Alessandro Fedeli ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Drashti Patel ◽  
Bappaditya Chatterjee

: Transfersomes are bilayer vesicles composed of phospholipid and edge-activators, which are mostly surfactant. Transfersomes based drug delivery system has gained a lot of interest of the pharmaceutical researchers for their ability to improve drug penetration and permeation through the skin. Transdermal drug delivery via transfersomes has the potential to overcome the challenge of low systemic availability. However, this complex vesicular system has different issues to consider for developing a successful transdermal delivery system. One of the major ingredients, phospholipid has versatile sources and variable effect on the vesicle size and drug entrapment in transfersomes. The other one termed as edge-activator or surfactant has some crucial consideration of skin damage and toxicity depending upon its type and concentration. A complex interaction between type and concentration of phospholipid and surfactant was observed, which affect the physicochemical properties of transfersomes. This review focuses on the practical factors related to these two major ingredients such as phospholipid and surfactant. The origin, purity, desired concentration, the susceptibility of degradation, etc. are the important factors for selecting phospholipid. Regarding surfactants, the major aspects are type and desired concentration. A successful development of transfersomes based drug delivery system depends on the proper considerations of these factors and practical aspects.


2019 ◽  
Vol 12 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Dheyauldeen Shabeeb ◽  
Masoud Najafi ◽  
Ahmed Eleojo Musa ◽  
Mansoor Keshavarz ◽  
Alireza Shirazi ◽  
...  

Background:Radiotherapy is one of the treatment methods for cancers using ionizing radiations. About 70% of cancer patients undergo radiotherapy. Radiation effect on the skin is one of the main complications of radiotherapy and dose limiting factor. To ameliorate this complication, we used melatonin as a radioprotective agent due to its antioxidant and anti-inflammatory effects, free radical scavenging, improving overall survival after irradiation as well as minimizing the degree of DNA damage and frequency of chromosomal abrasions.Methods:Sixty male Wistar rats were randomly assigned to 4 groups: control (C), melatonin (M), radiation (R) and melatonin + radiation (MR). A single dose of 30 Gy gamma radiation was exposed to the right hind legs of the rats while 40 mg/ml of melatonin was administered 30 minutes before irradiation and 2 mg/ml once daily in the afternoon for one month till the date of rat’s sacrifice. Five rats from each group were sacrificed 4, 12 and 20 weeks after irradiation. Afterwards, their exposed skin tissues were examined histologically and biochemically.Results:In biochemical analysis, we found that malondialdehyde (MDA) levels significantly increased in R group and decreased significantly in M and MR groups after 4, 12, and 20 weeks, whereas catalase (CAT) and superoxide dismutase (SOD) activities decreased in the R group and increased in M and MR groups during the same time periods compared with the C group (p<0.05). Histopathological examination found there were statistically significant differences between R group compared with the C and M groups for the three different time periods (p<0.005, p<0.004 and p<0.004) respectively, while R group differed significantly with MR group (p<0.013). No significant differences were observed between C and M compared with MR group (p>0.05) at 4 and 20 weeks except for inflammation and hair follicle atrophy, while there were significant effects at 12 weeks (p<0.05).Conclusion:Melatonin can be successfully used for the prevention and treatment of radiation-induced skin injury. We recommend the use of melatonin in optimal and safe doses. These doses should be administered over a long period of time for effective radioprotection and amelioration of skin damages as well as improving the therapeutic ratio of radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document