scholarly journals Bypass Boundary Layer Transition on Flat Plate by Adverse Pressure Gradient

2019 ◽  
Vol 213 ◽  
pp. 02077
Author(s):  
Vladislav Skála ◽  
Václav Uruba ◽  
Pavel Antoš ◽  
Pavel Jonáš

Bypass boundary layer transition in flows on flat plate by adverse pressure gradient was investigated experimentally. It was measuered cases with combination of adverse pressure gradient by different free stream turbulence intenzity. Hot wire anemometry technique was used. Measuerement were made on flat plate in closed wind tunnel. Adverse pressure gradient was set by diffuser in tested section of wind tunnel. Grid turbulence of free stream was controlled by screen. Hot wire anemometry technique was used, intermitency factor was evaluated. Results were compared wih cases with simpliest conditions.

2001 ◽  
Vol 446 ◽  
pp. 271-308 ◽  
Author(s):  
M. KALTER ◽  
H. H. FERNHOLZ

This paper is an extension of an experimental investigation by Alving & Fernholz (1996). In the present experiments the effects of free-stream turbulence were investigated on a boundary layer with an adverse pressure gradient and a closed reverse-flow region. By adding free-stream turbulence the mean reverse-flow region was shortened or completely eliminated and this was used to control the size of the separation bubble. The turbulence intensity was varied between 0.2% and 6% using upstream grids while the turbulence length scale was on the order of the boundary layer thickness. Mean and fluctuating velocities as well as spectra were measured by means of hot-wire and laser-Doppler anemometry and wall shear stress by wall pulsed-wire and wall hot-wire probes.Free-stream turbulence had a small effect on the boundary layer in the mild adverse-pressure-gradient region but in the vicinity of separation and along the reverse-flow region mean velocity profiles, skin friction and turbulence structure were strongly affected. Downstream of the mean or instantaneous reverse-flow regions highly disturbed boundary layers developed in a nominally zero pressure gradient and converged to a similar turbulence structure in all three cases at the end of the test section. This state was, however, still very different from that in a canonical boundary layer.


1988 ◽  
Vol 92 (916) ◽  
pp. 224-229
Author(s):  
P. E. Roach

Summary The procedures employed for the design of a closed-circuit, boundary layer wind tunnel are described. The tunnel was designed for the generation of relatively large-scale, two-dimensional boundary layers with Reynolds numbers, pressure gradients and free-stream turbulence levels typical of the turbomachinery environment. The results of a series of tests to evaluate the tunnel performance are also described. The flow in the test section is shown to be highly uniform and steady, with very low (natural) free-stream turbulence intensities. Measured boundary layer mean and fluctuating velocity profiles were found to be in good agreement with classical correlations. Test-section free-stream turbulence intensities are presented for grid-generated turbulence: agreement with expectation is again found to be good. Immediate applications to the tunnel include friction drag reduction and boundary layer transition studies, with future possibilities including flow separation and other complex flows typical of those found in gas turbines.


1989 ◽  
Vol 111 (4) ◽  
pp. 366-374 ◽  
Author(s):  
J. P. Gostelow ◽  
A. R. Blunden

Boundary layer transition was measured on a flat plate for four different turbulence levels. A range of adverse pressure gradients was imposed for one of these. The zero pressure gradient results were in agreement with accepted data for transition inception, length, and turbulent spot formation rate. They were also well represented by Narasimha’s universal intermittency distribution. A surprisingly strong similarity was also exhibited by intermittency distributions under adverse pressure gradients. Dimensionless velocity profiles were reasonable for the zero pressure gradient cases but difficulties with skin-friction prediction were experienced under adverse pressure gradient conditions. For this moderate turbulence level the transition inception Reynolds number remained reasonably constant with pressure gradient. Transition lengths, however, were greatly reduced by the imposition of even a weak adverse pressure gradient. This was associated with a strong increase in turbulent spot formation rate.


Author(s):  
H. Hoheisel ◽  
R. Kiock ◽  
H. J. Lichtfuß ◽  
L. Fottner

The optimization of the blade surface velocity distribution is promising a reduction of turbine cascade losses. Theoretical and experimental investigations on three turbine cascades with the same blade loading show the important influence of the blade pressure gradient and the free stream turbulence on the loss behaviour. The results presented demonstrate that it is the boundary layer transition behaviour that determines the losses on turbine cascades. An enormous effort in measuring technique is required in order to define the location of transition from cascade experiments very accurately.


Sign in / Sign up

Export Citation Format

Share Document