scholarly journals On teaching experimental reactor physics in times of pandemic

2021 ◽  
Vol 253 ◽  
pp. 10001
Author(s):  
Jan Malec ◽  
Michael Österlund ◽  
Andreas Solders ◽  
Ali Al-Adili ◽  
Anže Jazbec ◽  
...  

The COVID-19 induced restrictions have prevented reactor physics students from attending in-person reactor physics exercises which are a vital part of their education. Jožef Stefan Institute has organized remote exercises with the help of off-the-shelf technology, including multiple videoconferencing setups, remote desktop software, portable cameras, a dome camera, shared spreadsheets, and a common whiteboard. The students were encouraged to actively participate in the exercises by giving instructions to the reactor operator, asking and answering questions, logging data, operating digital acquisition systems, and performing analysis during the exercise. The first remote exercises were organized as a five-day course of experimental reactor physics for students from Uppsala University. The feedback was collected after the course using an anonymous online form and was generally positive but has revealed some problems with sound quality which were resolved later. The Jožef Stefan Institute can also organize a remote course during a full lockdown when the reactor is not able to operate using the in-house developed Research Reactor Simulator based on a point kinetics approximation and a simple thermohydraulic module.

2020 ◽  
Vol 225 ◽  
pp. 04032
Author(s):  
Anže Jazbec ◽  
Bor Kos ◽  
Vladimir Radulović ◽  
Klemen Ambrožič ◽  
Luka Snoj

Neutron and gamma dose rate calculations were carried out around horizontal beam tube no. 5 at the Jožef Stefan Institute (JSI) TRIGA Mark II research reactor. Results were compared to the experimental measurements in order to verify the computation model. In addition, another set of calculations and measurements was carried out, where an additional shield made out of concrete and paraffin was installed. With that configuration, we were able to study neutron and gamma scattering.


1953 ◽  
Vol 21 (4) ◽  
pp. 300-304
Author(s):  
E. D. Klema ◽  
R. J. Stephenson ◽  
S. Taylor

2014 ◽  
Vol 24 (4) ◽  
pp. 28-31
Author(s):  
Matej Lipoglavšek ◽  
Simon Širca

2020 ◽  
Vol 225 ◽  
pp. 04012
Author(s):  
JY. Ferrandis ◽  
O. Gatsa ◽  
P. Combette ◽  
D. Fourmentel ◽  
C. Destouches ◽  
...  

In this article we present a first part of the results obtained during an irradiation campaign conducted at the Jozef Stefan Institute to observe the behaviour of piezoelectric materials under gamma and neutron flux. Specific instrumentation has been developed and has enabled the monitoring throughout the irradiation of several materials such as lead zirconate titanate (PZT) or modified Bismuth Titanate (BiT) in either massive or thick film form. Various parameters such as resonance frequency, electromechanical coupling coefficient, electrical capacitance, dielectric losses were measured as a function of the flow and dose received. The results obtained confirm that the samples work up to doses of 10 18 n°/cm2 and that the behaviour of the samples varies according to their composition and form.


Sign in / Sign up

Export Citation Format

Share Document