enumerable language
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 181 (2-3) ◽  
pp. 189-211
Author(s):  
Henning Fernau ◽  
Lakshmanan Kuppusamy ◽  
Rufus O. Oladele ◽  
Indhumathi Raman

A simple semi-conditional (SSC) grammar is a form of regulated rewriting system where the derivations are controlled either by a permitting string alone or by a forbidden string alone and this condition is specified in the rule. The maximum length i (j, resp.) of the permitting (forbidden, resp.) strings serves as a measure of descriptional complexity known as the degree of such grammars. In addition to the degree, the numbers of nonterminals and of conditional rules are also counted into the descriptional complexity measures of these grammars. We improve on some previously obtained results on the computational completeness of SSC grammars by minimizing the number of nonterminals and / or the number of conditional rules for a given degree (i, j). More specifically we prove, using a refined analysis of a normal form for type-0 grammars due to Geffert, that every recursively enumerable language is generated by an SSC grammar of (i) degree (2, 1) with eight conditional rules and nine nonterminals, (ii) degree (3, 1) with seven conditional rules and seven nonterminals (iii) degree (4, 1) with six conditional rules and seven nonterminals and (iv) degree (4, 1) with eight conditional rules and six nonterminals.


2021 ◽  
Vol 179 (4) ◽  
pp. 361-384
Author(s):  
Zbyněk Křivka ◽  
Alexander Meduna

This paper investigates the reduction of scattered context grammars with respect to the number of non-context-free productions. It proves that every recursively enumerable language is generated by a scattered context grammar that has no more than one non-context-free production. An open problem is formulated.


2018 ◽  
Vol 23 (4) ◽  
pp. 981-993 ◽  
Author(s):  
Kalpana Mahalingam ◽  
Prithwineel Paul ◽  
Erkki Mäkinen

Derivation languages are language theoretical tools that describe halting derivation processes of a generating device. We consider two types of derivation languages, namely Szilard and control languages for splicing systems where iterated splicing is done in non-uniform way defined by Mitrana, Petre and Rogojin in 2010. The families of Szilard (rules and labels are mapped in a one to one manner) and control (more than one rule can share the same label) languages generated by splicing systems of this type are then compared with the family of languages in the Chomsky hierarchy. We show that context-free languages can be generated as Szilard and control languages and any non-empty context-free language is a morphic image of the Szilard language of this type of system with finite set of rules and axioms. Moreover, we show that these systems with finite set of axioms and regular set of rules are capable of generating any recursively enumerable language as a control language.


Author(s):  
N.A. Mohd Sebry ◽  
N. Z. A. Hamzah ◽  
N.H. Sarmin ◽  
W.H. Fong ◽  
S. Turaev

Molecular computing has gained many interests among researchers since Head introduced the first theoretical model for DNA based computation using the splicing operation in 1987. Another model for DNA computing was proposed by using the sticker operation which Adlemanused in his successful experiment for the computation of Hamiltonian paths in a graph: a double stranded DNA sequence is composed by prolonging to the left and to the right a sequence of (single or double) symbols by using given single stranded strings or even more complex dominoes with sticky ends, gluing these ends together with the sticky ends of the current sequence according to a complementarity relation. According to this sticker operation, a language generative mechanism, called a sticker system, can be defined: a set of (incomplete) double-stranded sequences (axioms) and a set of pairs of single or double-stranded complementary sequences are given. The initial sequences are prolonged to the left and to the right by using sequences from the latter set, respectively. The iterations of these prolongations produce “computations” of possibly arbitrary length. These processes stop when a complete double stranded sequence is obtained. Sticker systems will generate only regular languages without restrictions. Additional restrictions can be imposed on the matching pairs of strands to obtain more powerful languages. Several types of sticker systems are shown to have the same power as regular grammars; one type is found to represent all linear languages whereas another one is proved to be able to represent any recursively enumerable language. The main aim of this research is to introduce and study sticker systems over monoids in which with each sticker operation, an element of a monoid is associated and a complete double stranded sequence is considered to be valid if the computation of the associated elements of the monoid produces the neutral element. Moreover, the sticker system over monoids is defined in this study.


Author(s):  
Alexander Krassovitskiy

In this article we investigate insertion systems of small size in the framework of P systems. We consider P systems with insertion rules having one symbol context and we show that they have the computational power of context-free matrix grammars. If contexts of length two are permitted, then any recursively enumerable language can be generated. In both cases a squeezing mechanism, an inverse morphism, and a weak coding are applied to the output of the corresponding P systems. We also show that if no membranes are used then corresponding family is equal to the family of context-free languages.


2011 ◽  
Vol 22 (01) ◽  
pp. 203-212 ◽  
Author(s):  
ERZSÉBET CSUHAJ-VARJÚ ◽  
MARION OSWALD ◽  
GYÖRGY VASZIL

We introduce PC grammar systems where the components form clusters and the query symbols refer to clusters not individual grammars, i.e., the addressee of the query is not precisely identified. We prove that if the same component replies to all queries issued to a cluster in a rewriting step, then non-returning PC grammar systems with 3 clusters and 7 context-free components are able to generate any recursively enumerable language. We also provide open problems and directions for future research.


2010 ◽  
Vol 21 (04) ◽  
pp. 549-569 ◽  
Author(s):  
ERZSÉBET CSUHAJ-VARJÚ ◽  
JÜRGEN DASSOW ◽  
GYÖRGY VASZIL

In this paper we introduce and study some new cooperation protocols for cooperating distributed (CD) grammar systems. These derivation modes depend on the number of different nonterminals present in the sentential form obtained when a component finished a derivation phase. This measure describes the competence of the grammar on the string (the competence is high if the number of the different nonterminals is small). It is also a measure of the efficiency of the grammar on the given string (a component is more efficient than another one if it is able to decrease the number of nonterminals in the string to a greater extent). We prove that if the underlying derivation mode is the t-mode derivation, then some variants of these systems determine the class of random context ET0L languages. If these CD grammar systems use the k step limited derivations as underlying derivation mode, then they are able to generate any recursively enumerable language.


2010 ◽  
Vol 13 (03) ◽  
pp. 253-280 ◽  
Author(s):  
KATALIN ANNA LÁZÁR

In this paper, we present a formal language theoretic approach to the behavior of complex systems of cooperating and communicating agents performing distributed computation on dynamic networks. In particular, we model peer-to-peer networks and the information harvest of Internet crawlers on the World Wide Web, employing grammar systems theoretical constructions. In grammar systems theory, the grammars can be interpreted as agents, whilst the generated language describes the behavior of the system. To characterize the various phenomena that may arise in peer-to-peer networks, we apply networks of parallel multiset string processors. The multiset string processors form teams, send and receive information through collective and individual filters. We deal with the dynamics of the string collections. To describe the information harvest of the crawlers, we employ certain regulated rewriting devices in eco-grammar systems. We illustrate the wide range of applicability of the regulated rewriting devices in the field of web crawling techniques. We demonstrate that these eco-grammar systems with rather simple component grammars suffice to identify any recursively enumerable language.


Sign in / Sign up

Export Citation Format

Share Document