scholarly journals Concentrating System’s Design and Performance Analysis for Spacial Solar Array

Author(s):  
Limin Shao ◽  
Shuli Yang

A large area of sunlight onto solar cells is gathered by concentrating system for spacial concentrating solar array, which reduces the amount of solar cells by increasing light intensity onto the solar cells of the unit area. Under concentrating conditions, the short-circuit current, open-circuit voltage, fill factor, efficiency, operating temperature and strong thermal-electrical coupling characteristics of concentrating solar cells are different from the conventional solar cells because of the high intensity and high operating temperature. The concentrating module design, solar cell selection, and design of solar cell heat-dissipation have been carried out. The thermal-electric coupling model of special concentrating photovoltaic system has been established. The relationships among concentrated ratio, substrate-thickness, thermal conductivity of substrate-material and solar cell’s temperature, density of short-circuit current, open-circuit voltage, maximum output power have been analyzed, which provide a view to a reasonabl0e match and selection of multi-parameters in engineering design. Results show that the concentrated ratio has an overall effect on the open-circuit voltage, short-circuit current, efficiency and operating temperature of the solar cell. There is a strong coupling relationship among the parameters, and the positive and negative impacts caused by the concentrating characteristics should be weighed in the engineering design. The short-circuit current density of concentrating solar cells is proportional to the concentrated ratio. Under the lower concentrated ratio circumstance, fill factor and efficiency is not substantially affected by the concentrated ratio. The maximum output power and open-circuit voltage increase with the increase of concentrated ratio. Temperature of concentrating solar cells has an adverse effect on the open-circuit voltage, efficiency and output power, which needs high efficient radiator measures to be taken. The operating temperature of solar cells could be decreased significantly by the high thermal conductivity of the substrate-material. The concentrated ratio between 9~15 is recommended for spacial solar array, which not only embodies the advantage of concentrator like improving the cell-efficiency and decreasing the cost, but also doesn’t exact the deploying precision of concentrating system.

2012 ◽  
Vol 51 (10S) ◽  
pp. 10NF08 ◽  
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Hwen-Fen Hong ◽  
Tsung-Shiew Huang ◽  
Wu-Yih Uen ◽  
Yen-Yeh Chen

We performed accelerated tests on sealed and nonsealed InGaP/InGaAs/Ge triple-junction (TJ) solar cells in a complex high temperature and high humidity environment and investigated the electrical properties over time. The degradation of energy conversion efficiency in nonsealed cells was found to be more serious than that in sealed cells. The short-circuit current (ISC), open-circuit voltage (VOC), and fill factor (FF) of sealed cells changed very slightly, though the conversion efficiency decreased 3.6% over 500 h of exposure. This decrease of conversion efficiency was suggested to be due to the deterioration of silicone encapsulant. TheISC,VOC, and FF of nonsealed cells decreased with increasing exposure time. By EL and SEM analysis, the root causes of degradation can be attributed to the damage and cracks near the edge of cells induced by the moisture ingress. It resulted in shunt paths that lead to a deterioration of the conversion efficiency of solar cell by increasing the leakage current, as well as decreasing open-circuit voltage and fill factor of nonsealed solar cells.


2012 ◽  
Vol 51 ◽  
pp. 10NF08
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

Author(s):  
Omar Ghanim Ghazal ◽  
Ahmed Waleed Kasim ◽  
Nabeel Zuhair Tawfeeq

Cadmium telluride (CdTe)/cadmium sulfide (CdS) solar cell is a promising candidate for photovoltaic (PV) energy production, as fabrication costs are compared by silicon wafers. We include an analysis of CdTe/CdS solar cells while optimizing structural parameters. Solar cell capacitance simulator (SCAPS)-1D 3.3 software is used to analyze and develop energy-efficient. The impact of operating thermal efficiency on solar cells is highlighted in this article to explore the temperature dependence. PV parameters were calculated in the different absorber, buffer, and window layer thicknesses (CdTe, CdS, and SnO2). The effect of the thicknesses of the layers, and the fundamental characteristics of open-circuit voltage, fill factor, short circuit current, and solar energy conversion efficiency were studied. The results showed the thickness of the absorber and buffer layers could be optimized. The temperature had a major impact on the CdTe/CdS solar cells as well. The optimized solar cell has an efficiency performance of >14% when exposed to the AM1.5 G spectrum. CdTe 3000 nm, CdS 50 nm, SnO2 500 nm, and (at) T 300k were the I-V characteristics gave the best conversion open circuit voltage (Voc)=0.8317 volts, short circuit current density (Jsc)=23.15 mA/cm2, fill factor (FF)%=77.48, and efficiency (η)%=14.73. The results can be used to provide important guidance for future work on multi-junction solar cell design.


2012 ◽  
Vol 1426 ◽  
pp. 161-166
Author(s):  
Daiji Kanematsu ◽  
Mitsuhiro Matsumoto ◽  
Shigeo Yata ◽  
Yoichiro Aya ◽  
Akira Terakawa ◽  
...  

ABSTRACTWe correlated the texture morphology and the solar cell properties by measuring the distribution in the texture morphology. As a result, the short-circuit current ISC was approximated across various types of substrates by the standard texture height. Furthermore, we investigated the texture morphology from the point of view of the electrical effects. With regard to this point, the open-circuit voltage VOC was correlated to the steepest texture angle. Therefore, we consider that the both of the ISC and the VOC can be improved by controlling the distribution in the texture morphology.


Nanoscale ◽  
2016 ◽  
Vol 8 (13) ◽  
pp. 7248-7256 ◽  
Author(s):  
A. Varghese ◽  
M. Yakimov ◽  
V. Tokranov ◽  
V. Mitin ◽  
K. Sablon ◽  
...  

The quantum dot solar cell with nanoengineered suppression of photoelectron capture show the same open circuit voltage as the GaAs reference cell together with some improvements in the short circuit current.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Cheng-Chiang Chen ◽  
Lung-Chien Chen ◽  
Yi-Hsuan Lee

Indium zinc oxide (IZO)/cupper oxide (Cu2O) is a nontoxic nature and an attractive all-oxide candidate for low-cost photovoltaic (PV) applications. The present paper reports on the fabrication of IZO/Cu2O heterostructure solar cells which the Cu2O layers were prepared by oxidation of Cu thin films deposited on glass substrate. The measured parameters of cells were the short-circuit current (Isc), the open-circuit voltage (Voc), the maximum output power (Pm), the fill factor (FF), and the efficiency (η), which had values of 0.11 mA, 0.136 V, 5.05 μW, 0.338, and 0.56%, respectively, under AM 1.5 illumination.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kingsley O. Ukoba ◽  
Freddie L. Inambao ◽  
Andrew C. Eloka-Eboka

The need for affordable, clean, efficient, and sustainable solar cells informed this study. Metal oxide TiO2/NiO heterojunction solar cells were fabricated using the spray pyrolysis technique. The optoelectronic properties of the heterojunction were determined. The fabricated solar cells exhibit a short-circuit current of 16.8 mA, open-circuit voltage of 350 mV, fill factor of 0.39, and conversion efficiency of 2.30% under 100 mW/cm2 illumination. This study will help advance the course for the development of low-cost, environmentally friendly, and sustainable solar cell materials from metal oxides.


Author(s):  
Rachid Chaoui ◽  
Bedra Mahmoudi ◽  
Yasmine Si Ahmed

Stain etching of silicon solar cells in HF-FeCl3-H2O solutions as a last step in the processing sequence is reported. The etching was carried out without protecting the screen printed contacts. Following optimization of the solution composition and using very short etching times to alleviate the contact degradation problem, the solar cell weighted reflectance (Rw) between 400 and 1100 nm could be reduced from 38.23% to 11.54%. For the best small area cell (~20 cm2), the PS antireflective layer led to a relative improvement of 62.74% in the short-circuit current density, the FF was enhanced by 5.5% absolute, the open-circuit voltage was increased by 1.2 mV and the cell conversion efficiency was raised by 4.1% absolute from 5.4% to 9.5%. The best large area cell (~78 cm2) shows the following changes after porous layer formation: a relative improvement of 45.43% in the short-circuit current density, an improvement in the FF of 7.4% absolute, an increase in the open-circuit voltage by 7.5 mV and an enhancement in the cell efficiency by 4.0% absolute from 6.2% to 10.2%. This method shows a great potential for the cost-effective reduction of reflectance losses in industrial silicon solar cell manufacturing.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Sign in / Sign up

Export Citation Format

Share Document