scholarly journals Magnetic field influence on the spin-density wave of the organic conductor (TMTSF)2NO3

1993 ◽  
Vol 03 (C2) ◽  
pp. C2-293-C2-298
Author(s):  
S. TOMIC ◽  
N. BISKUP ◽  
B. KORIN-HAMZIC ◽  
M. BASLETIC ◽  
A. HAMZIC ◽  
...  
2002 ◽  
Vol 12 (9) ◽  
pp. 389-389
Author(s):  
W. G. Clark ◽  
F. Zamborsky ◽  
B. Alavi ◽  
P. Vonlanthen ◽  
W. Moulton ◽  
...  

We report proton NMR measurements of the effect of very high magnetic fields up to 44.7 T (1.9 GHz) on the spin density wave (SDW) transition of the organic conductor TMTSF2PF6. Up to 1.8 GHz, no effect of critical slowing close to the transition is seen on the proton relaxation rate (1/T1), which is determined by the SDW fluctuations associated with the phase transition at the NMR frequency. Thus, the correlation time for such fluctuations is less than $1O^{-10}$s. A possible explanation for the absence of longer correlation times is that the transition is weakly first order, so that the full critical divergence is never achieved. The measurements also show a dependence of the transition temperature on the orientation of the magnetic field and a quadratic dependence on its magnitude that agrees with earlier transport measurements at lower fields. The UCLA part of this work was supported by NSF Grant DMR-0072524.


1996 ◽  
Vol 54 (18) ◽  
pp. 12969-12978 ◽  
Author(s):  
Takahiko Sasaki ◽  
Andrei G. Lebed ◽  
Tetsuo Fukase ◽  
Naoki Toyota

1995 ◽  
Vol 52 (22) ◽  
pp. 15983-15991 ◽  
Author(s):  
J. L. Musfeldt ◽  
M. Poirier ◽  
P. Batail ◽  
C. Lenoir

1993 ◽  
Vol 07 (19) ◽  
pp. 3415-3421 ◽  
Author(s):  
ALEXANDRE S. ROZHAVSKY

A field description of spin-density-wave (SDW) in a quasi-two-dimensional metal with open Fermi surface in magnetic field, is proposed. The SDW transition temperature, T c (H), and the Hall conductivity σxy, are calculated. The dependence T c (H) is found to be different from that of the Bardeen-Cooper-Schrieffer model, in particular, a threshold field, H c , found its natural explanation. It is proved that the quantized Hall conductivity arises from the chiral anomaly terms in the effective action provided there is pinning of chemical potential in the gap of extended states.


2002 ◽  
Vol 12 (9) ◽  
pp. 61-64
Author(s):  
C. Pasquier ◽  
M. Héritier ◽  
D. Jérome

We present a model comparing the free energy of a phase exhibiting a segregation between spin density wave (SDW) and metallic domains (eventually superconducting domains) and the free energy of homogeneous phases which explains the findings observed recently in (TMTSF)2PF6. The dispersion relation of this quasi-one-dimensional organic conductor is linearized around the Fermi level. Deviations from perfect nesting which stabilizes the SDW state are described by a unique parameter t$'_b$, this parameter can be the pressure as well.


1997 ◽  
Vol 86 (1-3) ◽  
pp. 1909-1910 ◽  
Author(s):  
S. Uji ◽  
T. Terashima ◽  
H. Aoki ◽  
J.S. Brooks ◽  
M. Tokumoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document