scholarly journals Influence of Silicon, Carbon and Phosphorus on Intergranular Corrosion of High Purity Austenitic Stainless Steels Under Transpassive Conditions

1995 ◽  
Vol 05 (C7) ◽  
pp. C7-423-C7-428
Author(s):  
J. Stolarz
2010 ◽  
Vol 4 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Ikuo IOKA ◽  
Jun SUZUKI ◽  
Takafumi MOTOKA ◽  
Kiyoshi KIUCHI ◽  
Junpei NAKAYAMA

Author(s):  
Ikuo Ioka ◽  
Jun Suzuki ◽  
Takafumi Motoka ◽  
Kiyoshi Kiuchi ◽  
Junpei Nakayama

An intergranular corrosion is observed in austenitic stainless steels exposed to high temperature, concentrated nitric acid (HNO3) solution with highly oxidizing ions. It is an important degradation mechanism of austenitic stainless steels for use in a nuclear fuel reprocessing plant. The intergranular corrosion is caused by the segregation of impurities to grain boundaries and the resultant formation of active sites. Extra High Purity (EHP™) austenitic stainless steel was developed with conducting the new multiple refined melting in order to suppress the total harmful impurities less than 100ppm. The intergranular corrosion behavior of EHP alloys with various impurities was examined in boiling HNO3 solution with highly oxidizing ions to find a correlation between the intergranular corrosion and the impurities of EHP alloys. A good correlation was confirmed between the degree of intergranular corrosion and the corrosion rate. The relationships between the corrosion rate and the impurities content of EHP alloys was determined using a multiple regression analysis. The influence on corrosion rate became small in order of B, P, Si, C, S and Mn. It was important to control B in intergranular corrosion behavior of EHP alloys.


1986 ◽  
Vol 8 ◽  
pp. 593-604 ◽  
Author(s):  
Gianni Rondelli ◽  
B. Mazza ◽  
Tommaso Pastore ◽  
Bruno Vicentini

Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract CarTech 347 is a niobium+tantalum stabilized austenitic stainless steel. Like Type 321 austenitic stainless steel, it has superior intergranular corrosion resistance as compared to typical 18-8 austenitic stainless steels. Since niobium and tantalum have stronger affinity for carbon than chromium, carbides of those elements tend to precipitate randomly within the grains instead of forming continuous patterns at the grain boundaries. CarTech 347 should be considered for applications requiring intermittent heating between 425 and 900 °C (800 and 1650 °F). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1339. Producer or source: Carpenter Technology Corporation.


CORROSION ◽  
1977 ◽  
Vol 33 (11) ◽  
pp. 408-417 ◽  
Author(s):  
F. P. A. ROBINSON ◽  
W. G. SCURR

Abstract Two Type 304 stainless steels, one boron free and the other containing 4 ppm boron were investigated. Both steels were subjected to an identical series of corrosion tests and the results compared with one another. It was found (1) Boron had no detrimental effect on the potentiostatic characteristics, intergranular corrosion “resistance and pitting resistance of the steels in the “as-received” condition; (2) boron in solid solution had no detrimental effect on the potentiostatic characteristics and intergranular corrosion resistance of the steel, while boron in solution had a beneficial effect on the pitting resistance of the steel, and (3) boron retarded Cr23C6 precipitation and thus boron had marked beneficial effects on the intergranular corrosion resistance of the steels in a sensitized condition. In addition the potentiostatic characteristics and pitting resistance of such steels were improved slightly by the presence of boron.


Sign in / Sign up

Export Citation Format

Share Document