Optimal control strategies for the surface hardening of steel

2004 ◽  
Vol 120 ◽  
pp. 325-335
Author(s):  
D. Hömberg ◽  
S. Volkwein ◽  
W. Weiss

We discuss control strategies for the surface hardening of steel with laser or electron beam. The goal is to acchieve a prescribed hardening depth avoiding surface melting. Our mathematical model consists of a system of ODEs for the phase volume fractions coupled with the heat equation. The system is solved semi-implicitely using the finite element method. For the optimal control we discuss two approaches: model reduction using POD (Proper Orthogonal Decomposition) and a feedback control of temperature. The numerical results prove that it is not sufficient to control the surface temperature in order to obtain a uniform hardening depth. Instead the best strategy should be to compute the optimal temperature in the hot spot of the beam by solving the control problem and use this temperature as the set-point for the pyrometer control of the real process.

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Zhiwen Lu ◽  
Dawei Dong ◽  
Shancheng Cao ◽  
Huajiang Ouyang ◽  
Chunrong Hua

Multicrack localization in operating rotor systems is still a challenge today. Focusing on this challenge, a new approach based on proper orthogonal decomposition (POD) is proposed for multicrack localization in rotors. A two-disc rotor-bearing system with breathing cracks is established by the finite element method and simulated sensors are distributed along the rotor to obtain the steady-state transverse responses required by POD. Based on the discontinuities introduced in the proper orthogonal modes (POMs) at the locations of cracks, the characteristic POM (CPOM), which is sensitive to crack locations and robust to noise, is selected for cracks localization. Instead of using the CPOM directly, due to its difficulty to localize incipient cracks, damage indexes using fractal dimension (FD) and gapped smoothing method (GSM) are adopted, in order to extract the locations more efficiently. The method proposed in this work is validated to be effective for multicrack localization in rotors by numerical experiments on rotors in different crack configuration cases considering the effects of noise. In addition, the feasibility of using fewer sensors is also investigated.


Sign in / Sign up

Export Citation Format

Share Document