CHATTOCK. — On the Velocity and mass of the Ions in the Electric Wind in Air (Sur la vitesse et la masse des ions dans le souffle électrique dans l'air). P. 401

1900 ◽  
Vol 9 (1) ◽  
pp. 110-123
Keyword(s):  
2020 ◽  
Vol 4 (4) ◽  
pp. 56-63
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Burak Karadag ◽  
Cem Kolbakir ◽  
Ahmet Selim Durna

Purpose This paper aims to investigate the effects of a dielectric barrier discharge (DBD) plasma actuator (PA) qualitatively on aerodynamic characteristics of a 3 D-printed NACA 4412 airfoil model. Design/methodology/approach Airflow visualization study was performed at a Reynolds number of 35,000 in a small-scale open-loop wind tunnel. The effect of plasma actuation on flow separation was compared for the DBD PA with four different electrode configurations at 10°, 20° and 30° angles of attack. Findings Plasma activation may delay the onset of flow separation up to 6° and decreases the boundary layer thickness. The effects of plasma diminish as the angle of attack increases. Streamwise electrode configuration, in which electric wind is produced in a direction perpendicular to the freestream, is more effective in the reattachment of the airflow compared to the spanwise electrode configuration, in which the electric wind and the free stream are in the same direction. Practical implications The Reynolds number is much smaller than that in cruise aircraft conditions; however, the results are promising for low-velocity subsonic airflows such as improving control capabilities of unmanned aerial vehicles. Originality/value Superior efficacy of spanwise-generated electric wind over streamwise-generated one is demonstrated at a very low Reynolds number. The results in the plasma aerodynamics literature can be reproduced using ultra-low-cost off-the-shelf components. This is important because high voltage power amplifiers that are frequently encountered in the literature may be prohibitively expensive especially for resource-limited university aerodynamics laboratories.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Sanghoo Park ◽  
Uros Cvelbar ◽  
Wonho Choe ◽  
Se Youn Moon

Author(s):  
V.A. Altunin ◽  
K.V. Altunin ◽  
M.R. Abdullin ◽  
M.R. Chigarev ◽  
I.N. Aliev ◽  
...  

Relying on the review and analysis of scientific and technical literature, as well as the results of experimental studies, we developed new methods for calculating thermal processes occurring in gaseous methane during its natural convection, under the influence of electrostatic fields. In this study we show methods for calculating and determining the coefficients of heat transfer to gaseous methane under the influence of electric wind, as well as methods for calculating and determining the effect of electrostatic fields on the negative process of sedimentation on a heated experimental working plate in the volume of gaseous methane. A general method has been developed for the effective and safe application of electrostatic fields in gaseous methane, which must be carried out in the calculations, design, creation, and operation of new engines, power plants, and techno systems for single and reusable ground, air, aerospace and space-based aircraft.


Sign in / Sign up

Export Citation Format

Share Document