scholarly journals SUPG-stabilized virtual elements for diffusion-convection problems: a robustness analysis

Author(s):  
Lourenco Beirao da Veiga ◽  
Franco Dassi ◽  
Carlo Lovadina ◽  
Giuseppe Vacca

The objective of this contribution is to develop a convergence analysis for SUPG-stabilized Virtual Element Methods in diffusion-convection problems that is robust also in the convection dominated regime. For the original method introduced in [Benedetto et al, CMAME 2016] we are able to show an “almost uniform” error bound (in the sense that the unique term that depends in an unfavourable way on the parameters is damped by a higher order mesh-size multiplicative factor). We also introduce a novel discretization of the convection term that allows us to develop error estimates that are fully robust in the convection dominated cases. We finally present some numerical result.

Author(s):  
Andreas Dedner ◽  
Alice Hodson

Abstract We present a class of nonconforming virtual element methods for general fourth-order partial differential equations in two dimensions. We develop a generic approach for constructing the necessary projection operators and virtual element spaces. Optimal error estimates in the energy norm are provided for general linear fourth-order problems with varying coefficients. We also discuss fourth-order perturbation problems and present a novel nonconforming scheme which is uniformly convergent with respect to the perturbation parameter without requiring an enlargement of the space. Numerical tests are carried out to verify the theoretical results. We conclude with a brief discussion on how our approach can easily be applied to nonlinear fourth-order problems.


2017 ◽  
Vol 17 (4) ◽  
pp. 553-574 ◽  
Author(s):  
Susanne C. Brenner ◽  
Qingguang Guan ◽  
Li-Yeng Sung

AbstractWe present novel techniques for obtaining the basic estimates of virtual element methods in terms of the shape regularity of polygonal/polyhedral meshes. We also derive new error estimates for the Poisson problem in two and three dimensions.


Author(s):  
N'Guessan Koffi ◽  
Diabate Nabongo ◽  
Toure Kidjegbo Augustin

This paper concerns the study of the numerical approximation for the following parabolic equations with a nonlinear convection term $$\\ \left\{% \begin{array}{ll} \hbox{$u_t(x,t)=u_{xx}(x,t)-g(u(x,t))u_{x}(x,t)+f(u(x,t)),\quad 0<x<1,\; t>0$,} \\ \hbox{$u_{x}(0,t)=0, \quad u_{x}(1,t)=0,\quad t>0$,} \\ \hbox{$u(x,0)=u_{0}(x) > 0,\quad 0\leq x \leq 1$,} \\ \end{array}% \right. $$ \newline where $f:[0,+\infty)\rightarrow [0,+\infty)$ is $C^3$ convex, nondecreasing function,\\ $g:[0,+\infty)\rightarrow [0,+\infty)$ is $C^1$ convex, nondecreasing function,\newline $\displaystyle\lim_{s\rightarrow +\infty}f(s)=+\infty$, $\displaystyle\lim_{s\rightarrow +\infty}g(s)=+\infty$, $\displaystyle\lim_{s\rightarrow +\infty}\frac{f(s)}{g(s)}=+\infty$\newline and $\displaystyle\int^{+\infty}_{c}\frac{ds}{f(s)}<+\infty$ for $c>0$. We obtain some conditions under which the solution of the semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We also prove that the semidiscrete blow-up time converges to the real one, when the mesh size goes to zero. Finally, we give some numerical results to illustrate ours analysis.


Author(s):  
Simon Lemaire

Abstract We present a unifying viewpoint on hybrid high-order and virtual element methods on general polytopal meshes in dimension $2$ or $3$, in terms of both formulation and analysis. We focus on a model Poisson problem. To build our bridge (i) we transcribe the (conforming) virtual element method into the hybrid high-order framework and (ii) we prove $H^m$ approximation properties for the local polynomial projector in terms of which the local virtual element discrete bilinear form is defined. This allows us to perform a unified analysis of virtual element/hybrid high-order methods, that differs from standard virtual element analyses by the fact that the approximation properties of the underlying virtual space are not explicitly used. As a complement to our unified analysis we also study interpolation in local virtual spaces, shedding light on the differences between the conforming and nonconforming cases.


Sign in / Sign up

Export Citation Format

Share Document