polytopal meshes
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 20)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jérôme Droniou ◽  
Liam Yemm

Abstract We design a Hybrid High-Order (HHO) scheme for the Poisson problem that is fully robust on polytopal meshes in the presence of small edges/faces. We state general assumptions on the stabilisation terms involved in the scheme, under which optimal error estimates (in discrete and continuous energy norms, as well as L 2 L^{2} -norm) are established with multiplicative constants that do not depend on the maximum number of faces in each element, or the relative size between an element and its faces. We illustrate the error estimates through numerical simulations in 2D and 3D on meshes designed by agglomeration techniques (such meshes naturally have elements with a very large numbers of faces, and very small faces).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Riccardo Milani ◽  
Jérôme Bonelle ◽  
Alexandre Ern

Abstract We investigate artificial compressibility (AC) techniques for the time discretization of the incompressible Navier–Stokes equations. The space discretization is based on a lowest-order face-based scheme supporting polytopal meshes, namely discrete velocities are attached to the mesh faces and cells, whereas discrete pressures are attached to the mesh cells. This face-based scheme can be embedded into the framework of hybrid mixed mimetic schemes and gradient schemes, and has close links to the lowest-order version of hybrid high-order methods devised for the steady incompressible Navier–Stokes equations. The AC time-stepping uncouples at each time step the velocity update from the pressure update. The performances of this approach are compared against those of the more traditional monolithic approach which maintains the velocity-pressure coupling at each time step. We consider both first-order and second-order time schemes and either an implicit or an explicit treatment of the nonlinear convection term. We investigate numerically the CFL stability restriction resulting from an explicit treatment, both on Cartesian and polytopal meshes. Finally, numerical tests on large 3D polytopal meshes highlight the efficiency of the AC approach and the benefits of using second-order schemes whenever accurate discrete solutions are to be attained.


Author(s):  
Jérôme Droniou ◽  
Robert Eymard ◽  
Thierry Gallouët ◽  
Raphaèle Herbin

2020 ◽  
Vol 20 (3) ◽  
pp. 437-458 ◽  
Author(s):  
Jérôme Droniou ◽  
Robert Eymard ◽  
Thierry Gallouët ◽  
Raphaèle Herbin

AbstractWe adapt the Gradient Discretisation Method (GDM), originally designed for elliptic and parabolic partial differential equations, to the case of a linear scalar hyperbolic equations. This enables the simultaneous design and convergence analysis of various numerical schemes, corresponding to the methods known to be GDMs, such as finite elements (conforming or non-conforming, standard or mass-lumped), finite volumes on rectangular or simplicial grids, and other recent methods developed for general polytopal meshes. The scheme is of centred type, with added linear or non-linear numerical diffusion. We complement the convergence analysis with numerical tests based on the mass-lumped {\mathbb{P}_{1}} conforming and non-conforming finite element and on the hybrid finite volume method.


Sign in / Sign up

Export Citation Format

Share Document