scholarly journals A mixed elasticity formulation for fluid-poroelastic structure interaction

Author(s):  
Tongtong Li ◽  
Ivan Yotov

We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers-Joseph-Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters.

2018 ◽  
Vol 40 (1) ◽  
pp. 87-108
Author(s):  
Eberhard Bänsch ◽  
Markus Gahn

Abstract In this paper we introduce and analyze a mixed finite-element approach for a coupled bulk-surface problem of second order with a Wentzell boundary condition. The problem is formulated on a domain with a curved smooth boundary. We introduce a mixed formulation that is equivalent to the usual weak formulation. Furthermore, optimal a priori error estimates between the exact solution and the finite-element approximation are derived. To this end, the curved domain is approximated by a polyhedral domain introducing an additional geometrical error that has to be bounded. A computational result confirms the theoretical findings.


2019 ◽  
Vol 53 (6) ◽  
pp. 1915-1955 ◽  
Author(s):  
Ilona Ambartsumyan ◽  
Vincent J. Ervin ◽  
Truong Nguyen ◽  
Ivan Yotov

We develop and analyze a model for the interaction of a quasi-Newtonian free fluid with a poroelastic medium. The flow in the fluid region is described by the nonlinear Stokes equations and in the poroelastic medium by the nonlinear quasi-static Biot model. Equilibrium and kinematic conditions are imposed on the interface. We establish existence and uniqueness of a solution to the weak formulation and its semidiscrete continuous-in-time finite element approximation. We present error analysis, complemented by numerical experiments.


Author(s):  
Arbaz Khan ◽  
David J Silvester

Abstract This work is dedicated to the memory of John W. Barrett, who introduced the concept of inf–sup stability to the corresponding author in the bar at the MAFELAP conference in 1981. We analyze a posteriori error estimators for locking-free mixed finite element approximation of Biot’s consolidation model. Three estimators are described. The simplest of these is a conventional residual-based estimator. We establish bounds relating the estimated and true errors, and show that these are independent of the physical parameters. The other two estimators require the solution of local problems. These local problem estimators are also shown to be reliable, efficient and robust. Numerical results are presented that validate the theoretical estimates, and illustrate the effectiveness of the estimators in guiding adaptive solution algorithms. The IFISS and T-IFISS software packages used for the computational experiments are available online.


2012 ◽  
Vol 22 (09) ◽  
pp. 1250024 ◽  
Author(s):  
DOUGLAS N. ARNOLD ◽  
RICHARD S. FALK ◽  
JAY GOPALAKRISHNAN

We consider the finite element solution of the vector Laplace equation on a domain in two dimensions. For various choices of boundary conditions, it is known that a mixed finite element method, in which the rotation of the solution is introduced as a second unknown, is advantageous, and appropriate choices of mixed finite element spaces lead to a stable, optimally convergent discretization. However, the theory that leads to these conclusions does not apply to the case of Dirichlet boundary conditions, in which both components of the solution vanish on the boundary. We show, by computational example, that indeed such mixed finite elements do not perform optimally in this case, and we analyze the suboptimal convergence that does occur. As we indicate, these results have implications for the solution of the biharmonic equation and of the Stokes equations using a mixed formulation involving the vorticity.


2018 ◽  
Vol 52 (5) ◽  
pp. 2003-2035
Author(s):  
P. Ciarlet ◽  
L. Giret ◽  
E. Jamelot ◽  
F.D. Kpadonou

We study first the convergence of the finite element approximation of the mixed diffusion equations with a source term, in the case where the solution is of low regularity. Such a situation commonly arises in the presence of three or more intersecting material components with different characteristics. Then we focus on the approximation of the associated eigenvalue problem. We prove spectral correctness for this problem in the mixed setting. These studies are carried out without, and then with a domain decomposition method. The domain decomposition method can be non-matching in the sense that the traces of the finite element spaces may not fit at the interface between subdomains. Finally, numerical experiments illustrate the accuracy of the method.


Sign in / Sign up

Export Citation Format

Share Document