scholarly journals Study on Chloride Ion Penetration Resistance of Rubberized Concrete Under Steady State Condition

2016 ◽  
Vol 47 ◽  
pp. 01004
Author(s):  
Nurazuwa Md Noor ◽  
Daisuke Yamamoto ◽  
Hidenori Hamada ◽  
Yasutaka Sagawa
2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Nurazuwa Md Noor ◽  
H. Hamada ◽  
Y. Sagawa ◽  
D. Yamamoto

This paper present the effect of crumb rubber on its ability to produce concrete with structural strength when it was used directly from the plant without any treatment process. Crumb rubber was added as fine aggregates at 0%, 10%, 15% and 20% of sand volume meanwhile silica fume was added at 10% by cement weight. Three main series of concrete namely rubberized concrete with water-to-cement ratio of 50% and 35% was design and development of compressive strength was observed from day 7 until 91 days. Also, effectiveness of crumb rubber under flexural strength and splitting tensile strength was studied at 28 days curing age. Effect of crumb rubber on durability performance was done on chloride ion penetration resistance performance by migration test and by immersion in salt water. Chloride ion diffusion in rubberized concrete by migration test was carried out under steady state condition using effective diffusion coefficient, De meanwhile, immersion test in salt water was conducted under non-steady state condition using apparent diffusion coefficient, Da. Results showed that compressive strength was decrease with the increasing of crumb rubber in the mixture.  Even though the strength were reducing with the inclusion of crumb rubber, the reduction were less than 50% and it achieved acceptable structural strength. Chloride transport characteristics were improved by increasing amount of CR and rubberized concrete with w/c = 0.35 gave better resistance against chloride ion compared to w/c = 0.50 with more than 50% difference. Silica fume provide slightly strength increment compared to normal rubberized concrete and the same behavior was observed during chloride ion diffusion test.


2012 ◽  
Vol 204-208 ◽  
pp. 3240-3243
Author(s):  
Hui Liu ◽  
Ping Li ◽  
Qiao Lan Jin

This research focuses on investigating the high performance concrete durability containing slag with different fineness and dosage. For this purpose, the 28-day compressive strength, chloride ion penetration, and frost resistance were investigated, with slag surface area 420m2/kg, 530m2/kg, 610m2/kg, and 720m2/kg, and replacement percentage 0%, 20%, 40%, and 60%, respectively. It was found that chloride ion penetration resistance were affected by the fineness and dosage of slag, and concrete frost resistance property was mainly controlled by dosage of slag rather than the fineness, and the 28-day compressive strength increased with slag incorporation.


2012 ◽  
Vol 174-177 ◽  
pp. 286-290
Author(s):  
Hui Liu ◽  
Yuan Bao Leng ◽  
Wan Zeng Song ◽  
Sheng Bi

This research focuses on investigating the high performance concrete containing slag with different fineness and dosage. For this purpose, the workability, compressive strength at different ages, and chloride ion penetration were investigated, with slag surface area 420m2/kg, 530m2/kg, 610m2/kg, and 720m2/kg, and replacement percentage 0%, 20%, 40%, and 60%, respectively. It was found that the workability and chloride ion penetration resistance were affected by the fineness and dosage of slag. The 7-day compressive strength decreased with slag replacement increasing when the fineness of slag is lower than 530m2/kg, and 28-day and 56-day compressive strength increased; For the fineness higher than 530m2/kg, the 7-day compressive strength is higher than that of control concrete, when the slag replacement was 40%, the concrete reached the highest value, and the 28-day and 56-day compressive strength increased with slag incorporation.


Sign in / Sign up

Export Citation Format

Share Document