Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires

2009 ◽  
Vol 31 (6) ◽  
pp. 403-407 ◽  
Author(s):  
N. Oikonomou ◽  
S. Mavridou
Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 146
Author(s):  
Jakub Hodul ◽  
Nikol Žižková ◽  
Ruben Paul Borg

Crystalline admixtures and industrial by-products can be used in cement-based materials in order to improve their mechanical properties. The research examined long-term curing and the exposure to environmental actions of polymer–cement mortars with crystalline admixture (CA) and different by-products, including Bengħisa fly ash and Globigerina limestone waste filler. The by-products were introduced as a percentage replacement of the cement. A crystallization additive was also added to the mixtures in order to monitor the improvement in durability properties. The mechanical properties of the mortar were assessed, with 20% replacement of cement with fly ash resulting in the highest compressive strength after 540 days. The performance was analyzed with respect to various properties including permeable porosity, capillary suction, rapid chloride ion penetration and chloride migration coefficient. It was noted that the addition of fly ash and crystalline admixture significantly reduced the chloride ion penetration into the structure of the polymer cement mortar, resulting in improved durability. A microstructure investigation was conducted on the samples through Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS). Crystals forming through the crystalline admixture in the porous structure of the material were clearly observed, contributing to the improved properties of the cement-based polymer mortar.


2012 ◽  
Vol 204-208 ◽  
pp. 3240-3243
Author(s):  
Hui Liu ◽  
Ping Li ◽  
Qiao Lan Jin

This research focuses on investigating the high performance concrete durability containing slag with different fineness and dosage. For this purpose, the 28-day compressive strength, chloride ion penetration, and frost resistance were investigated, with slag surface area 420m2/kg, 530m2/kg, 610m2/kg, and 720m2/kg, and replacement percentage 0%, 20%, 40%, and 60%, respectively. It was found that chloride ion penetration resistance were affected by the fineness and dosage of slag, and concrete frost resistance property was mainly controlled by dosage of slag rather than the fineness, and the 28-day compressive strength increased with slag incorporation.


2012 ◽  
Vol 174-177 ◽  
pp. 286-290
Author(s):  
Hui Liu ◽  
Yuan Bao Leng ◽  
Wan Zeng Song ◽  
Sheng Bi

This research focuses on investigating the high performance concrete containing slag with different fineness and dosage. For this purpose, the workability, compressive strength at different ages, and chloride ion penetration were investigated, with slag surface area 420m2/kg, 530m2/kg, 610m2/kg, and 720m2/kg, and replacement percentage 0%, 20%, 40%, and 60%, respectively. It was found that the workability and chloride ion penetration resistance were affected by the fineness and dosage of slag. The 7-day compressive strength decreased with slag replacement increasing when the fineness of slag is lower than 530m2/kg, and 28-day and 56-day compressive strength increased; For the fineness higher than 530m2/kg, the 7-day compressive strength is higher than that of control concrete, when the slag replacement was 40%, the concrete reached the highest value, and the 28-day and 56-day compressive strength increased with slag incorporation.


Sign in / Sign up

Export Citation Format

Share Document