chloride ion diffusion
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Silas de Andrade Pinto ◽  
Sandro Lemos Machado ◽  
Daniel Véras Ribeiro

Abstract Corrosion is one of the main phenomena that lead to pathological manifestations in reinforced concrete structures under aggressive environments. with the chloride ion being the most responsible for its occurrence. In this way, understanding the transport mechanisms of this ion through the microstructure of the concrete is of fundamental importance to prevent or delay the penetration of these aggressive agents to guarantee a durable structure. In the literature, there are extensive studies concerning the diffusion of chlorides in concrete and the influence of pozzolanic additions in this mechanism. However, only a few correlate the different methods of analysis. This work aims to determine the chloride ion diffusion coefficients in concrete containing various levels of silica fume (5%, 10%, and 15%) or varying the mortar content (54%, 80%, and 100%), and compares the results obtained through column tests and chloride migration tests. It was observed that, although the techniques used were quite distinct, the diffusion values obtained were similar, contributing to the validation of both techniques. Furthermore, the variation in the mortar ratio causes a reduction in the interfacial transition zone of coarse aggregate/mortars and an increase in the content of aluminates, which promotes a similar effect to the use of silica fume.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5675
Author(s):  
Changhyuck Lim ◽  
Gyuyong Kim ◽  
Gyeongtae Kim ◽  
Bokyeong Lee ◽  
Youngduck Kim ◽  
...  

Wave power marine concrete structures generate electrical energy using waves. They are exposed to a multi-deterioration environment because of air and hydrostatic pressure and chloride attack. In this study, the effect of air pressure repeatedly generated by water level change of wave power marine concrete structures on the chloride-ion diffusion of marine concrete was analyzed. The chloride-ion diffusion of wave power marine concrete structures was evaluated. The results show that the air chamber and bypass room, which were subjected to repetitive air pressures caused by water level changes, showed a higher water-soluble chloride-ion content compared to the generator room and docking facility, which were subjected to atmospheric pressure. Field exposure tests and indoor chloride attack tests were performed using fabricated specimens to analyze the effect of pressure on chloride-ion penetration. It was confirmed that Portland blast furnace slag had a greater inhibitory effect on chloride-ion penetration than ordinary Portland cement. The concrete specimens subjected to pressure showed increased capillary pores and micro-cracks. We devised an equation for calculating the diffusion coefficient based on measured data and estimating the diffusion coefficient for the location receiving repeated air pressure by using the diffusion coefficient of the location receiving general atmospheric pressure.


2021 ◽  
Vol 11 (17) ◽  
pp. 8215
Author(s):  
Byung-Hwan Ahn ◽  
Su-Jin Lee ◽  
Chan-Gi Park

In the construction industry, the lack of supply and demand for high-quality natural aggregates is a problem. In the case of South Korea, according to data from the Ministry of Environment, it is predicted that the depletion of aggregate resources will occur in 20 years, considering the amount of aggregate used in construction every year and the amount of natural aggregate. Therefore, it is necessary to develop recycled aggregates that can replace natural aggregates for construction. The purpose of this study is to evaluate the applicability of recyclable air-cooled slag (ACS) aggregates as a substitute material for natural aggregates applied to rural-road pavement concrete. That is, the applicability of rural-road pavement concrete is evaluated by evaluating the strength and durability of rural-road pavement concrete to which an ACS aggregate is applied. Durability was assessed in terms of the chloride ion diffusion, repeated wetting-drying, abrasion resistance, impact resistance, and repeated freezing-thawing tests. The test result showed that the diffusion coefficient of the mixture to which the ACS aggregate was applied was slightly larger. In addition, the diffusion coefficient was slightly larger in the case of applying the air-cooled slag coarse aggregate (GG) than in the case of applying the air-cooled slag fine aggregate (GS). The results of abrasion and impact resistance tests of ACS-aggregate-incorporated rural-road concrete indicated that abrasion and impact resistance decreased as the aggregate content increased. The ACS retained some of the properties of the blast furnace slag. Thus, in repetitive wetting-drying tests, which can cause changes in chemical properties, the ACS aggregate increased the concrete’s long-term residual strength. In addition, the results showed that the relative dynamic elastic modulus targeting repeated freezing-thawing resistance satisfied the 80% target. The freeze-thaw resistance improved as the ACS aggregate content increased. In conclusion, the results of this study showed that the durability of rural-road pavement concrete can be improved experimentally by applying both GG and GS at the same time. Therefore, it is shown that ACS aggregates can be applied to rural-road pavement concrete as a substitute for natural aggregates.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haiwei Zhu ◽  
Hongfa Yu ◽  
Haiyan Ma ◽  
Bo Da ◽  
Qiquan Mei

Purpose The purpose of this paper is to compare the effect of rust inhibitors and surface strengthening materials on the service life of RC structures in tropical marine environments and ultimately to provide basis and recommendations for the durability design of reinforced concrete (RC) structures. Design/methodology/approach Slag concrete specimens mixed with four kinds of rust inhibitors and coated with four kinds of surface strengthening materials were corroded by seawater exposure for 365 days, and the key parameters of chloride ion diffusion were obtained by testing. Then a new service life prediction model, based on the modified model for chloride ion diffusion and reliability theory, was applied to analyze the effect of rust inhibitors and surface strengthening materials on the service life of RC structures in tropical marine environments. Findings Rust inhibitors and surface strengthening materials can effectively extend the service life of RC structures through different effects on chloride ion diffusion behavior. The effects of rust inhibitors and surface strengthening materials on the service life extension of RC structures adhered to the following trend: silane material > cement-based permeable crystalline waterproof material > hydrophobic plug compound > spray polyurea elastomer > water-based permeable crystalline waterproof material > calcium nitrite > preservative > amino-alcohol composite. Originality/value Using a new method for predicting the service life of RC structures, the attenuation law of the service life of RC structures under the action of rust inhibitors and surface strengthening materials in tropical marine environments is obtained.


2021 ◽  
Vol 283 ◽  
pp. 01015
Author(s):  
Yan Xin-e

Reactive powder concrete (RPC) is a new cement-based material with ultra-high strength, high durability, high toughness and good volume stability. The study of chloride corrosion behavior is of great significance to the application of RPC in complex service environment. In this paper, the chloride ion immersion experiment is carried out to investigate the change rule of chloride ion concentration on the surface of RPC with soaking time under different loads. The results show that with the extending of soaking time, the chloride ion concentration of RPC surface gradually increases and tends to be stable, and the different depths from RPC surface also show similar rules. The results also show that the chloride ion diffusion characteristics of RPC under different loads are different, and the chloride ion diffusion rate under bending stress is higher than that under compressive stress.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5717
Author(s):  
Xiaokang Cheng ◽  
Jianxin Peng ◽  
C.S. Cai ◽  
Jianren Zhang

The existence of axial and lateral compressive stress affect the diffusion of chloride ions in concrete will lead to the performance degradation of concrete structure. This paper experimentally studied the chloride diffusivity properties of uniaxial and biaxial sustained compressive stress under one-dimensional chloride solution erosion. The influence of different sustained compressive stress states on chloride ion diffusivity is evaluated by testing chloride concentration in concrete. The experiment results show that the existence of sustained compressive stress does not always inhibit the diffusion of chloride ions in concrete, and the numerical value of sustained compressive stress level can affect the diffusion law of chloride ions in concrete. It is found that the chloride concentration decreases most when the lateral compressive stress level is close to 0.15 times the compressive strength of concrete. In addition, the sustained compressive stress has a significant effect on chloride ion diffusion of concrete with high water/cement ratio. Then, the chloride diffusion coefficient model under uniaxial and biaxial sustained compressive stress is established based on the apparent chloride diffusion coefficient. Finally, the results demonstrate that the chloride diffusion coefficient model is reasonable and feasible by comparing the experimental data in the opening literature with the calculated values from the developed model.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5430
Author(s):  
JangHyun Park ◽  
JinHo Park ◽  
MyeongGyu Jung

When an additive is used to replace a certain amount of cement, a concrete pore structure becomes dense. Thus, it results in inhibiting the penetration of chlorine ions and suppressing corrosion of reinforcing bars. However, the pH level of the concrete decreases, and it deteriorates the performance of the passive film formed on the surface of the rebars embedded in the concrete. Therefore, in this study, the service lives of reinforced concrete containing different types of concrete binders were predicted and compared. The chloride ion diffusion coefficients of concretes with various binders were measured, and the critical chloride content of the rebar was assessed by the real-time monitoring on the corrosion initiation time of the rebar embedded in concrete. Moreover, Fick’s 2nd law was applied to predict when the chloride content at the 40 mm depth of cover reached the critical chloride content based on the chloride ion diffusion coefficient. It was observed that the service life of S6 (OPC 40% + GGBFS 60%) was the highest, followed by TBC (OPC 40% + GGBFS 40% + FA 20%), S3 (OPC 70% + GGBFS 30%), and OPC (OPC 100%).


Sign in / Sign up

Export Citation Format

Share Document