scholarly journals Robust Control of Magnetic Bearing in the Inertially Stabilized Platform for Aerial Remote Sensing

2016 ◽  
Vol 54 ◽  
pp. 03004
Author(s):  
Qingyuan Guo ◽  
Gang Liu ◽  
Tong Wen
Author(s):  
Xiangyang Zhou ◽  
Yuan Jia ◽  
Yong Li

An integral sliding mode controller based disturbance rejection compound scheme is proposed to attenuate the influences of nonlinear disturbances and parameter uncertainties on stability accuracy of the three-axis inertially stabilized platform for the aerial remote sensing applications. The compound scheme is composed of an integral sliding mode controller and a disturbance measurement unit. The integral sliding mode controller is used to ensure robust stability against exterior nonlinear disturbances and parameter uncertainties, in which the saturation function is employed to reduce the chattering. The disturbance measurement unit is served as the disturbance measurement components of the rate loop and current loop of three closed-loop structure in the inertially stabilized platform control system, by which the interior high-frequency disturbances are compensated in real time. To verify the method, simulations and experiments are conducted. In simulations, the LuGre friction model is introduced to analyze the effects of disturbances. Further, a series of experiments are carried out. The results show that the compound scheme has excellent ability in both of disturbances rejection and robust stabilization, by which the stability accuracy of the inertially stabilized platform is improved significantly.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiangyang Zhou ◽  
Chao Yang ◽  
Beilei Zhao ◽  
Libo Zhao ◽  
Zhuangsheng Zhu

This paper presents a high-precision control scheme based on active disturbance rejection control (ADRC) to improve the stabilization accuracy of an inertially stabilized platform (ISP) for aerial remote sensing applications. The ADRC controller is designed to suppress the effects of the disturbance on the stabilization accuracy that consists of a tracking differentiator, a nonlinear state error feedback, and an extended state observer. By the ADRC controller, the effects of both the internal uncertain dynamics and the external multisource disturbances on the system output are compensated as a total disturbance in real time. The disturbance rejection ability of the ADRC is analyzed by simulations. To verify the method, the experiments are conducted. The results show that compared with the conventional PID controller, the ADRC has excellent capability in disturbance rejection, by which the effect of main friction disturbance on the control system can be weakened seriously and the stabilization accuracy of the ISP is improved significantly.


Sign in / Sign up

Export Citation Format

Share Document