Decoupling control for a three-axis inertially stabilized platform used for aerial remote sensing

2014 ◽  
Vol 37 (9) ◽  
pp. 1135-1145 ◽  
Author(s):  
Xiangyang Zhou ◽  
Guohao Gong ◽  
Jianping Li ◽  
Hongyan Zhang ◽  
Ruixia Yu
Author(s):  
Xiangyang Zhou ◽  
Yuan Jia ◽  
Yong Li

An integral sliding mode controller based disturbance rejection compound scheme is proposed to attenuate the influences of nonlinear disturbances and parameter uncertainties on stability accuracy of the three-axis inertially stabilized platform for the aerial remote sensing applications. The compound scheme is composed of an integral sliding mode controller and a disturbance measurement unit. The integral sliding mode controller is used to ensure robust stability against exterior nonlinear disturbances and parameter uncertainties, in which the saturation function is employed to reduce the chattering. The disturbance measurement unit is served as the disturbance measurement components of the rate loop and current loop of three closed-loop structure in the inertially stabilized platform control system, by which the interior high-frequency disturbances are compensated in real time. To verify the method, simulations and experiments are conducted. In simulations, the LuGre friction model is introduced to analyze the effects of disturbances. Further, a series of experiments are carried out. The results show that the compound scheme has excellent ability in both of disturbances rejection and robust stabilization, by which the stability accuracy of the inertially stabilized platform is improved significantly.


2014 ◽  
Vol 898 ◽  
pp. 807-813 ◽  
Author(s):  
Rui Yin ◽  
Rui Wang ◽  
Xiang Yang Zhou ◽  
Xiang Yang Peng ◽  
Ke Wang

The mutual coupling between the motion of three frames exists when inertial stabilized platform (ISP) for aerial remote sensing system is working, due to the mechanical character of the stabilized platform. Based on Lagrange mechanics and starting from analytical mechanics, a kinetics model of inertial stabilized platform is developed for analyzing the complex coupling relation. On the basis of the model, a nonlinear decoupling control method using sliding mode control (SMC) is designed for rolling and pitching frames after coupling moment being taken for external disturbance. While, for azimuth frame, which can not directly adopt sliding mode control method, a novel method of introducing a judgment factor and combining SMC and PID is provided. Compared with PID method, the simulation results show that the overshoot of the system is reduced obviously and the decoupling effect is better. Results obtained will be a theoretical foundation for the further study of inertial stabilized platform, and guarantee high precision to stabilized platform system.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiangyang Zhou ◽  
Chao Yang ◽  
Beilei Zhao ◽  
Libo Zhao ◽  
Zhuangsheng Zhu

This paper presents a high-precision control scheme based on active disturbance rejection control (ADRC) to improve the stabilization accuracy of an inertially stabilized platform (ISP) for aerial remote sensing applications. The ADRC controller is designed to suppress the effects of the disturbance on the stabilization accuracy that consists of a tracking differentiator, a nonlinear state error feedback, and an extended state observer. By the ADRC controller, the effects of both the internal uncertain dynamics and the external multisource disturbances on the system output are compensated as a total disturbance in real time. The disturbance rejection ability of the ADRC is analyzed by simulations. To verify the method, the experiments are conducted. The results show that compared with the conventional PID controller, the ADRC has excellent capability in disturbance rejection, by which the effect of main friction disturbance on the control system can be weakened seriously and the stabilization accuracy of the ISP is improved significantly.


Sign in / Sign up

Export Citation Format

Share Document