scholarly journals Applications of Axiomatic Design Theory in Design for Human Safety in Manufacturing Systems: A Literature Review

2017 ◽  
Vol 127 ◽  
pp. 01020
Author(s):  
Leyla Sadeghi ◽  
Mahmoud Houshmand ◽  
Omid Fatahi Valilai
Author(s):  
Johan Vallhagen

Abstract In earlier work, the axiomatic design theory has been analyzed for applications on product design and the production processes that pertain to it, where parts manufacture and assembly take place in flexible and automatic manufacturing systems. The conclusion is that the original model cannot handle the manufacturing aspects in a satisfactory manner. This report proposes an expansion of the axiomatic design model, with a life-cycle approach as take-off. The expansion of the model consists of the introduction of a so-called Manufacturing World with different spaces, where various types of processes and support functions can be developed in agreement with the axiomatic principles. The spaces and their relationships have been defined along with explanations of work procedures. An explanatory example is given.


Author(s):  
Johan Vallhagen

Abstract This paper addresses some limitations of the axiomatic design theory (AD) when designing complex products and matching manufacturing systems. The conclusion is that, for complex manufacturing systems, this cannot be done in such a straightforward way as described in literature. The original method is best used for manufacturing of parts only, i.e. to find the appropriate process variables (PVs). In the case of complex manufacturing systems, a one-to-one mapping between physical domain and process domain is not possible since not all design parameters (DP) are components. Therefore, an additional process requirement domain (PR), proposed earlier, has been used. With it, the components are extracted from the DP hierarchy and mapped to different spaces in the manufacturing world. In these spaces, PRs and PVs are selected when designing the manufacturing system. An example is given to show the deficiencies and how to use the suggested modifications.


2018 ◽  
Vol 223 ◽  
pp. 01006 ◽  
Author(s):  
Kate Kujawa ◽  
Jakob Weber ◽  
Erik Puik ◽  
Kristin Paetzold

Automotive production is faced with the challenge of bringing new products to market faster, with decreasing turn-around times, meaning production must be continually changing to accommodate new products. This paper proposes an approach to decrease a product’s time-to-market, by increasing the efficiency of automotive assembly unit design. Providing designers with conceptual information about future vehicle models early in the product design process, could shift the design start forward and enable a more efficient transition process. Large automotive companies work on vehicle design and development for years before a product is ready for production. If during these earlier stages of product design, significant changes are identified and communicated to production designers, the manufacturing system design can get a jump start with an early exploration phase. A method exists, which uses the Axiomatic Design theory to develop Reconfigurable Manufacturing Systems through a modular breakdown. A similar method Adapt! employs Axiomatic Design and Scrum to develop changeable or adaptable production systems. This paper proposes to extend the Adapt! method to include an exploration phase, which through early communication, provides an overview of the required design process, and enables faster identification of the critical design challenges. A case study is performed by analysing a currently produced vehicle and its future electric version.


Author(s):  
P Almström ◽  
P Märtensson

The axiomatic design theory as stated by Suh has proven useful when designing products, and this success has led to an increasing interest in applying the theory to manufacturing systems development. The theory states that functional couplings should be avoided in general. However, manufacturing systems are potentially coupled in many ways, the most obvious being that manufacturing operations usually are performed in a sequence. Functional coupling is defined as a dependence between functional requirements. The subject of couplings in manufacturing systems is not extensively explored or described in the literature, and specifically not in relation to the axiomatic design theory. Five different categories of couplings in manufacturing systems are described and exemplified in this paper. Couplings can be designed into the manufacturing system for a diverse range of reasons, e.g. selection of manufacturing processes or materials, but they may also be irrational, e.g. decisions based on political opinions.


Author(s):  
Mats Nordlund ◽  
Taesik Lee ◽  
Sang-Gook Kim

In 1977, Nam P Suh proposed a different approach to design research. Suh’s approach was different in that it introduced the notions of domains and layers in a 2-D design thinking and stipulated a set of axioms that describes what is a good design. Following Suh’s 2-D reasoning structure in a zigzagging manner and applying these axioms through the design process should enable the designer to arrive at a good design. In this paper, we present our own experiences in applying Suh’s theories to software design, product design, organizational design, process design, and more in both academic and industrial settings. We also share our experience from teaching the Axiomatic Design theory to students at universities and engineers in industry, and draw conclusions on how best to teach and use this approach, and what results one can expect. The merits of the design axioms are discussed based on the practical experiences that the authors have had in their application. The process developed around the axioms to derive maximum value (solution neutral environment, design domains, what-how relationship, zig-zag process, decomposition, and design matrices) is also discussed and some updates are proposed.


2015 ◽  
Vol 32 (1) ◽  
pp. 3-17
Author(s):  
Naresh K. Sharma ◽  
Elizabeth A. Cudney

Purpose – Complexity is an important element in axiomatic design theory. The current method for calculating complexity for a system following normal distribution is unbounded and approximate. The purpose of this paper is to present a detailed bounded solution for complexity using design and system ranges on a single function requirement. Design/methodology/approach – This paper discusses the complexity measure for a system following a uniform distribution. The complexities of two types of systems, a system performing with a uniform distribution and a system performing on target according to a normal distribution are then considered and compared. The research proposes a complexity measure for a system performing within specification limits with a uniform distribution. In addition, a new concept of relative complexity is proposed. Findings – A bounded solution for complexity for a normal distribution based on the existing assumptions was given which includes bias in addition to variance. The bounded solution was then compared to the existing approximate solution from the variance as well as bias standpoint. It was found that bias has an inappropriately reverse relationship with the bounded solution of complexity. Therefore, complexity cannot be used to approximate the system improvement when the improvement is based on a reduction in bias. Originality/value – The current method for calculating complexity for a system following normal distribution is unbounded and approximate. This paper proposed a complexity measure for a system performing within specification limits with a uniform distribution.


2018 ◽  
Vol 223 ◽  
pp. 01021
Author(s):  
Oana Dodun ◽  
Ema Panaite ◽  
Petru Duşa ◽  
Gheorghe Nagît ◽  
Margareta Coteată ◽  
...  

Ultrasonic abrasive cavitational machining is a nonconventional machining method applied to remove surfaces in workpieces made of brittle, hard, or non-conductive materials that cannot be efficiently machined by other classical or nonconventional machining methods. Among the factors that can affect the values of the parameters of technological interest for the ultrasonic machining process, the relative pressure between the ultrasonic tool and the workpiece surface to be machined could be considered. The main objective of the research presented in this paper was to analyze the possibilities of selecting the most convenient solution among many such available solutions to ensure the tool feed motion, when designing a device for achieving an ultrasonic drilling process. At present, this selection could be achieved by means of an optimal selection method. Taking into consideration some functional requirements of the device, the method of analytic hierarchy process and the axiomatic design theory were used to solve some problems met in the design process.


Sign in / Sign up

Export Citation Format

Share Document