scholarly journals Reflection and Transmission of Acoustic Waves through the Layer of Multifractional Bubbly Liquid

2018 ◽  
Vol 148 ◽  
pp. 15001
Author(s):  
Damir Anvarovich Gubaidullin ◽  
Ramil Nakipovich Gafiyatov

The mathematical model that determines reflection and transmission of acoustic wave through a medium containing multifractioanl bubbly liquid is presented. For the water-water with bubbles-water model the wave reflection and transmission coefficients are calculated. The influence of the bubble layer thickness on the investigated coefficients is shown. The theory compared with the experiment. It is shown that the theoretical results describe and explain well the available experimental data. It is revealed that the special dispersion and dissipative properties of the layer of bubbly liquid can significantly influence on the reflection and transmission of acoustic waves in multilayer medium

2012 ◽  
Vol 37 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Anna Baranowska

Abstract The aim of the paper is a theoretical analysis of propagation of high-intensity acoustic waves throughout a bubble layer. A simple model in the form of a layer with uniformly distributed mono-size spherical bubbles is considered. The mathematical model of the pressure wave’s propagation in a bubbly liquid layer is constructed using the linear non-dissipative wave equation and assuming that oscillations of a single bubble satisfy the Rayleigh-Plesset equation. The models of the phase sound speed, changes of resonant frequency of bubbles and damping coefficients in a bubbly liquid are compared and discussed. The relations between transmitted and reflected waves and their second harmonic amplitudes are analyzed. A numerical analysis is carried out for different environmental parameters such as layer thicknesses and values of the volume fraction as well as for different parameters of generated signals. Examples of results of the numerical modeling are presented.


2018 ◽  
Vol 148 ◽  
pp. 15006
Author(s):  
Damir Gubaidullin ◽  
Anatolii Nikiforov

The results of a theoretical study of the effect of a bubble layer on the propagation of acoustic waves through a thin three-layered barrier at various angles of incidence are presented. The barrier consists of a layer of gel with polydisperse air bubbles bounded by layers of polycarbonate. It is shown that the presence of polydisperse air bubbles in the gel layer significantly changes the transmission and reflection of the acoustic signal when it interacts with such an obstacle for frequencies close to the resonant frequency of natural oscillations of the bubbles. The frequency range is identified where the angle of incidence has little effect on the reflection and transmission coefficients of acoustic waves.


1988 ◽  
Vol 1 (21) ◽  
pp. 80 ◽  
Author(s):  
C. Vidal ◽  
M.A. Losada ◽  
R. Medina ◽  
J. Rubio

A semi-empirical theory is formulated to predict wave reflection and transmission at a porous breakwater of rectangular cross section for normally incident solitary waves. The solution is based on the linearized form of the governing equations and on equivalent linearization of the friction loss in the porous structure. Experimental results of transmission coefficients are presented for a large range of incident wave amplitudes, with several gravel sizes, water depths and breakwater geometries. Experimental and theoretical results are compared and evaluated; the comparison shows satisfactory agreement for the transmission coefficient.


Author(s):  
Bongsu Kang ◽  
Chin An Tan

Abstract In this paper, the wave reflection and transmission characteristics of an axially strained, rotating Timoshenko shaft under general support and boundary conditions, and with geometric discontinuities are examined. As a continuation to Part I of this paper (Kang and Tan, 1997), the wave reflection and transmission at point supports with finite translational and rotational constraints are further discussed. The reflection and transmission matrices for incident waves upon general supports and geometric discontinuities are derived. These matrices are combined, with the aid of the transfer matrix method, to provide a concise and systematic approach for the free vibration analysis of multi-span rotating shafts with general boundary conditions. Results on the wave reflection and transmission coefficients are presented for both the Timoshenko and the Euler-Bernoulli models to investigate the effects of the axial strain, shaft rotation speed, shear and rotary inertia.


Geophysics ◽  
1978 ◽  
Vol 43 (3) ◽  
pp. 528-537 ◽  
Author(s):  
Franklyn K. Levin

Assuming media having a velocity dependence on angle which is an ellipse, we have confirmed previously reported time‐distance relations for reflections from single interfaces, for reflections from sections of beds separated by horizontal interfaces, for refraction arrivals, and added the expression for diffractions. We also have derived expressions for plane‐wave reflection and transmission coefficients at an interface separating two transversely isotropic media. None of the properties differs greatly from those for isotropic media. However, velocities found from seismic surface reflections or refractions are horizontal components. There seems to be no way of obtaining vertical components of velocity from surface measurements alone and hence no way to compute depths from surface data.


Author(s):  
Artur L. Gower ◽  
I. David Abrahams ◽  
William J. Parnell

Effective medium theory aims to describe a complex inhomogeneous material in terms of a few important macroscopic parameters. To characterize wave propagation through an inhomogeneous material, the most crucial parameter is the effective wavenumber . For this reason, there are many published studies on how to calculate a single effective wavenumber. Here, we present a proof that there does not exist a unique effective wavenumber; instead, there are an infinite number of such (complex) wavenumbers. We show that in most parameter regimes only a small number of these effective wavenumbers make a significant contribution to the wave field. However, to accurately calculate the reflection and transmission coefficients, a large number of the (highly attenuating) effective waves is required. For clarity, we present results for scalar (acoustic) waves for a two-dimensional material filled (over a half-space) with randomly distributed circular cylindrical inclusions. We calculate the effective medium by ensemble averaging over all possible inhomogeneities. The proof is based on the application of the Wiener–Hopf technique and makes no assumption on the wavelength, particle boundary conditions/size or volume fraction. This technique provides a simple formula for the reflection coefficient, which can be explicitly evaluated for monopole scatterers. We compare results with an alternative numerical matching method.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C145-C161 ◽  
Author(s):  
Xiaoqin Cui ◽  
Edward S. Krebes ◽  
Laurence R. Lines

Amplitude variation with offset (AVO) inversion attempts to use the available surface seismic data to estimate the density, P-wave velocity, and S-wave velocity of the earth model. Under linear slip interface theory, synthetic seismograms for models with fractures prove that fractures are also reflection generators. Consequently, observed reflections are not necessarily due to lithologic variations only, but they could be due in part to the effect of fractures. To obtain approximate equations for AVO inversion for fractured media, denoted by AVO with fracture (AVOF), we derived new equations for PP-wave reflection and transmission coefficients that are based on nonwelded contact boundary conditions. In particular, along with the fracture compliances, azimuth has also been taken into account in the equations because the fractures can have any orientation. The new approximate AVOF equations for a horizontally fractured medium with impedance contrast are developed by simplifying the equations for the new PP-wave reflection and transmission coefficients. In the new approximate AVOF equations, the reflection coefficients are divided into a welded contact part (a conventional impedance contrast part) and a nonwelded contact part (a fracture part). This makes the equations flexible enough to separately invert for the rock properties of the fracture and the background medium in the case of a fractured medium with impedance contrast. The new approximate AVOF equations state that fractures could cause the seismic reflectivity to be frequency dependent, and that the fractures not only influence the wave amplitude but also change the wave phase. The linear least-squares and nonlinear conjugate gradient inversion algorithms are applied to estimate the elastic reflectivity using the new approximate AVOF equations. The inverted results for seismic data for a horizontally fractured medium with impedance contrast are evaluated to find a more accurate delineation of the subsurface rock properties.


Sign in / Sign up

Export Citation Format

Share Document