scholarly journals Decrease in failure load of inclined driven piles by using Allpile program

2018 ◽  
Vol 162 ◽  
pp. 01010
Author(s):  
Ahmed Al-Gharbawi

One of the problems in construction piles in field is driven inclined which maybe become by error during putting pile or driven. This type of problem in construction is difficult to determine bearing capacity. In this research, studying the determination of bearing capacity of inclined pile in deferent angles and different types of soil as well as deferent types of piles shapes by using AllPile program. The results demonstrate that the reduction in bearing capacity of 30° inclined pile less than 20% from the non inclined pile.

2018 ◽  
Vol 149 ◽  
pp. 02025 ◽  
Author(s):  
A Benali ◽  
A Nechnech ◽  
B Boukhatem ◽  
M N Hussein ◽  
M Karry

Determination of pile bearing capacity from the in-situ tests has developed considerably due to the significant development of their technology. The project presented in this paper is a combination of two approaches, artificial neural networks and main component analyses that allow the development of a neural network model that provides a more accurate prediction of axial load bearing capacity based on the SPT test data. The retropropagation multi-layer perceptron with Bayesian regularization (RB) was used in this model. This was established by the incorporation of about 260 data, obtained from the published literature, of experimental programs for large displacement driven piles. The PCA method is proposed for compression and suppression of the correlation between these data. This will improve the performance of generalization of the model.


Author(s):  
Yerlan Atenov ◽  
Isabai Bekbasarov

In a pile foundation setting practice driven piles with an unconventional (variable) longitudinal shape of surface are widely used. Such piles are made with various slopes of the side faces, may have different types of broadenings, thickenings, etc. The effectiveness of such piles is due to their design features, allowing full use of the natural bearing capacity of the soil base without additional reinforcement. The obvious advantages of these piles make it relevant to study the features of their interaction with the soil stratum, especially the bearing capacity of piles. This study was aimed to investigate vertical bearing capacity of driven reinforced concrete piles with several broadening of the shaft. Numerical calculations and experimental studies of the bearing capacity of piles with broadening under the static loading have been carried out. Equations for calculating the bearing capacity of piles with broadenings are proposed and their verification is performed. The equations include a coefficient that takes into account the features of soil behavior underneath of the pile broadening during palification. Correlation dependence is presented which makes it possible to determine the values of that coefficient depending on the number of pile broadening and the liquidity index of soil. A correlation that makes allow calculations the bearing capacity of piles with broadening via the bearing capacity of a prismatic pile is proposed. The equations are recommended to be used at the stage of variant design of piles with broadening as part of the pile foundations of buildings and structures.


2021 ◽  
Vol 147 (1) ◽  
pp. 04020086
Author(s):  
Vittorio Ranieri ◽  
Nicola Berloco ◽  
Donato D’Auria ◽  
Vincenzo Disalvo ◽  
Veronica Fedele ◽  
...  
Keyword(s):  

2014 ◽  
Vol 2 (1) ◽  
pp. 11-29
Author(s):  
Ahmad Jabber Hussain ◽  
Alaa Dawood Salman ◽  
. Nazar Hassan Mohammad

      According to this theoretical study which was about loading of piles under different condition of loading (compression and up-lift forces ) and for deferent pile installation (vertical and inclined pile ) by which it called (positive batter pile ) when the inclination of the load and pile is in the same direction and called (negative batter pile) when the inclination of load is opposite to the pile inclination, and from studying these cases the results of analysis can be summarize in the flowing points: 1-Variation of load inclination on piles effects on the bearing capacity and uplift resistance. It was found that bearing capacity of the piles increase with increasing of load inclination up to the inclination angle (37.5ͦ) which represents the maximum bearing capacity and then the bearing capacity decrease with increasing of load inclination. 2- Variation of batter pile affects the bearing capacity of the pile and up-lift resistance. by which equivalent angle will be used as result between the load and piles inclination and this angle will be used in calculation of piles resistance . 3- It was noticed the shape of soil failure is highly affected by the inclination of pile. The shape of failure for the soil which is in contact with pile and this include (vertical and batter piles) is highly affected by the angle of inclination.


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


Sign in / Sign up

Export Citation Format

Share Document