scholarly journals Stress Concentration Factor of A Two-Planar Double KT Tubular Joint due to In-Plane Bending Loading in Steel Offshore Structures

2018 ◽  
Vol 177 ◽  
pp. 01006
Author(s):  
Prastianto Rudi Walujo ◽  
Hadiwidodo Yoyok Setyo ◽  
Fuadi Ibnu Fasyin

The purpose of this study is to investigate the proper Stress Concentration Factor (SCF) of a 60° two-planar DKT tubular joint of a tripod wellhead offshore structure. So far, calculation of SCF for a multi-plane tubular joint was based on the formulation for the simple/uniplanar tubular joints that yield in over/under prediction of the SCF of the joint. This situation in turn decreasing the accuracy of fatigue life prediction of the structures. The SCF is one of the most important parameters in the tubular joint fatigue analysis. The tubular joint is modelled as finite element models with bending loads acting on the braces that cover a wide range of dimensionless geometrical parameters (β, τ, γ). The effect of such parameters on the SCF distribution along the weld toe of braces and chord on the joint are investigated. Validation of the finite element model has shown good agreement to the global structural analysis results. The results of parametric studies show that the peak SCF mostly occurs at around crown 2 point of the outer central brace. The increase of the β leads to decrease the SCF. While the increase of the τ and γ leads to increase the SCF. The effect of parameter β and γ on the SCF are greater than the effect of parameter τ.

Author(s):  
Yuhui Huang ◽  
Chengcheng Wang ◽  
Shan-Tung Tu ◽  
Fu-Zhen Xuan ◽  
Takamoto Itoh

Finite element analysis is adopted to study the stress concentration of pit area under tension-torsion loading. The stress concentration factors under regular evolution and irregular evolution of pits are investigated by conducting a series of three-dimensional semi-elliptical pitted models. Based on the finite element analysis, it can be concluded that pit aspect ratio (a/2c) is a significant parameter affecting stress concentration factor (SCF) for regular evolution pits. Pits, having higher aspect ratio, are very dangerous form and can cause significant reduction in the load carrying capacity. When local dissolution occurs in the pitting area, SCF will have a sharp increase, it is more probable for a crack to initiate from these areas compared with pits for regular evolution. Furthermore, local dissolution coefficient is proposed to study effect of local dissolution within the pit on SCF.


Author(s):  
Yasumasa Shoji ◽  
Toshiyuki Sawa

Bolts and Nuts are required to fasten objects, such as flanges in various types of plants. It is known that stress concentration at the root is relevant for its strength for both static integrity and fatigue. A lot of investigations were carried out to understand the behavior of the bolt using experimental and numerical methods. Recently, finite element analyses have been used to examine the detailed behavior of the bolt root successfully. The authors reported such example in a recent study [13] using submodelling (or so-called zooming) technique that handled only bolt tension with rigid fastened surface; some factors were missing. In this paper, the twist of the bolt was taken into account and the fastened object is replaced by deformable plates. The stress concentration factor has been reconsidered.


Author(s):  
Xiang Liu ◽  
Yue Li ◽  
Jinhua Wang ◽  
Bin Wu

The spent nuclear fuel of HTR-PM (High Temperature Reactor–Pebblebed Modules) will be dry stored in wells. In the mouth of each well, there is a cover weighing 11 tons. A lifting appliance with three hooks is used to open and close the covers. The hooks are L-shaped with fillet at the inside corner. The stress concentration at the corner has a significant impact on the strength and fatigue life of hooks. For optimizing the structure of the hook, the stress concentration factor related to the radius of fillet is calculated by both theoretical and numerical methods. The theoretical calculation is based on the Saint-Venant’s Principle and the analytical solution of a curved beam. The result is consistent with the numerical calculation performed by the finite element method.


2016 ◽  
Vol 851 ◽  
pp. 739-744
Author(s):  
Bo Li ◽  
Hong Gang Lei ◽  
Xu Yang

In this paper, the author uses ANSYS, the software of finite element analysis, to establish the finite element model, the hot spot stress value of different connection structures of steel tube-welded hollow sphere under uniaxial elongation has been analyzed, the theoretical stress concentration factor of this joint has been obtained. Through the static test on the four typical test-piece, 26 steel tube-welded hollow spherical nodes in total, the actually measured stress concentration factor of the joints has been obtained. The theoretical analysis basically coincides with the law of stress concentration factor obtained from the test results.


Aviation ◽  
2006 ◽  
Vol 10 (4) ◽  
pp. 3-7
Author(s):  
Daiva Zeleniakienė ◽  
Antanas Žiliukas

The numerical finite element method was used to identify the stress concentration factor of the structure of foamed polymer material under tensile loading by constant strain and depending on cell form, orientation, and geometrical parameters. It was determined that the value of the stress concentration factor depends upon both the form and the orientation of the cell with respect to the loading direction. It was also determined that the higher ratio of the thickness to the length of the edge of the cell is, the higher the stress concentration factor is. The low stress concentration factor is when the angle between edges is approximately 90° and the rounding radius of this angle is from 0.25R to 0.4R (R is maximal rounding radius), angle between cell edges, and the direction of loading is equal to 45°.


2013 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
L Mhamdi ◽  
AC Seibi ◽  
A Karrech ◽  
S El-Borgi ◽  
I Barsoum

 This paper discusses the development of semi-empirical relations for the maximum stress concentration factor (SCF) around circular holes embedded in aluminum tubes under various expansion ratios and mandrel angles. Finite element models were developed to study the expansion of a typical aluminum tube with embedded holes of various sizes. An elastic perfectly-plastic material behaviour was used to describe the structural response of the tubes under expansion. Various hole-diameter-to-tubewall- thickness ratios, tube expansion ratios, and mandrel angles were considered to determine the stress state around the hole at zero and 90 degree locations from which the maximum SCF was determined. Semi-empirical relations for the maximum SCF using the Lagrange interpolation formulation were developed. The developed relations were found to predict the SCFs accurately. 


Sign in / Sign up

Export Citation Format

Share Document