scholarly journals Tribological characteristics of Al/SiC/Gr hybrid composites

2018 ◽  
Vol 183 ◽  
pp. 02001 ◽  
Author(s):  
Sandra Veličković ◽  
Slavica Miladinović ◽  
Blaža Stojanović ◽  
Ružica Nikolić ◽  
Branislav Hadzima ◽  
...  

Metal matrix composites (MMCs) are considered as important engineering materials due to their excellent mechanical, as well as tribological properties. When the metal (or alloy) matrix is reinforced with two or more reinforcements, those composites are the so-called hybrid composites. The aluminum metal matrix composites, reinforced with silicon carbide (SiC) and graphite (Gr), are extensively used due to their high strength and wear resistance. The tribological characteristics of such materials are superior to characteristics of the matrix. This research is presenting influence of the load and the graphite and silicon carbide contents the composites’ wear rate and the friction coefficient.

Aluminum metal matrix composites with various reinforcements had pronounced prospective of meeting the criteria of recent engineering applications like aerospace, automobile, breakpads, sports, this is due to their enhancement of some mechanical properties by some addition of matrix in to decide material. The present study focuses on the fabrication of 6351 aluminum MMC hybrid composites reinforced with silicon carbide and graphite powder, followed by a wear test for characterization of the material. Although several methods are available for the fabrication of Al-Sic MMC, we have employed stir casting technique due to its simplicity and economical. In this work aluminum metal matrix composites reinforced with different weight fractions of 2%, 4%, 6% and 8% graphite and silicon carbide in equal proportion characteristics were compared with Al6351 alloy. It is found that the wear properties have been improved with increase in weight fraction of the reinforcements of silicon carbide and graphite in aluminum matrix


Hybrid composites are those composites which have a combination of two or more reinforcements in a single matrix. In this study, Hybrid Aluminum Metal Matrix Composites were fabricated by using Stir Casting technique. Hybrid composites with three reinforcements such as Aluminum oxide(Al2O3 ), Silicon Carbide (SiC) and Boron Carbide (B4C) in different proportions are considered and Aluminum alloy 6061-T6 (Al6061) as base alloy matrix. Later, the cast aluminum metal matrix composites were machined as per ASTM standards with required dimensions. Mechanical tests such as tensile, flexural, Charpy impact, Brinell Hardness tests were conducted on the composites fabricated inorder to evaluate effect of reinforcements. Morphological study of the composites is carried out by using Scanning electron microscope (SEM). The test results were studied and analyzed.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2092971
Author(s):  
Ying Ba ◽  
Shu Sun

Fiber-reinforced metal matrix composites have mechanical properties highly dependent on directions, possessing high strength and fatigue resistance in fiber longitudinal direction achieved by weak interface bonding. However, the disadvantage of weak interface combination is the reduction of transversal performances. In this article, tensile and fatigue properties of carbon fiber-reinforced 5056 aluminum alloy matrix (Cf/5056Al) composite under the condition of medium-strength interface combination are carried out. The fatigue damage mechanisms of Cf/5056Al composite under tension–tension and tension–compression loads are not the same, but the fatigue life curves are close, which may be the result of the medium-strength interface combination.


2018 ◽  
Vol 5 ◽  
pp. 7 ◽  
Author(s):  
Vemula Vijaya Vani ◽  
Sanjay Kumar Chak

Metal Matrix Composites are developed in recent years as an alternative over conventional engineering materials due to their improved properties. Among all, Aluminium Matrix Composites (AMCs) are increasing their demand due to low density, high strength-to-weight ratio, high toughness, corrosion resistance, higher stiffness, improved wear resistance, increased creep resistance, low co-efficient of thermal expansion, improved high temperature properties. Major applications of these materials have been in aerospace, automobile, military. There are different processing techniques for the fabrication of AMCs. Powder metallurgy is a one of the most promising and versatile routes for fabrication of particle reinforced AMCs as compared to other manufacturing methods. This method ensures the good wettability between matrix and reinforcement, homogeneous microstructure of the fabricated MMC, and prevents the formation of any undesirable phases. This article addresses mainly on the effect of process parameters like sintering time, temperature and particle size on the microstructure of aluminum metal matrix composites.


Sign in / Sign up

Export Citation Format

Share Document