scholarly journals The vector optimization and modeling of a technical systems

2018 ◽  
Vol 224 ◽  
pp. 04020
Author(s):  
Leonid B. Matusov

The construction a feasible solution set with a given accuracy is a main problem in multicriteria optimization and modeling. In order to construct the feasible solution set, a method called the Parameter Space Investigation has been created and successfully integrated into various fields of industry, science, and technology. Multicriteria modeling (identification) is a new direction that is of great value in applications. In the most common usage, the term “identification” means construction of the mathematical model of a system and determination of the parameters (design variables) of the model. The construction a feasible solution set with a given accuracy is a common way for solving multicriteria optimization and modeling problems. The issues of the estimation of the Parameter Space Investigation method convergence rate, the approximation of the feasible solution set are described. Besides these, the multicriteria identification problems of mechanical systems are discussed too.

2009 ◽  
Vol 71 (12) ◽  
pp. e109-e117 ◽  
Author(s):  
Roman Statnikov ◽  
Alex Bordetsky ◽  
Josef Matusov ◽  
Il’ya Sobol’ ◽  
Alexander Statnikov

2019 ◽  
Vol 126 ◽  
pp. 00016
Author(s):  
Leonid Matusov

The design and optimization of a large-scale systems are the most difficalt problems. A large-scale system consists of a number of subsystems. For example, in a harvest for harvesting one can separate the following subsystems: the frame, driver's cab, platform, engine, transmission, and steering system. Different departments of the design office engaged in creating a machine optimize their ‘own’ subsystems, while ignoring others. A machine assembled from ‘autonomously optimal’ subsystems turns out to be far from perfect. A machine is a single whole. When improving one of its subsystems, we can unwittingly worsen others. This implies that it is not always possible to solve optimization problems directly even for determination of the feasible solution set. The correct determination of the feasible solution set was a major challenge in engineering optimization problems. In order to construct the feasible solution set, a method called the Parameter Space Investigation (PSI) has been created and successfully integrated into various fields of industry, science, and technology. The methods of approximation of the feasible solution and Pareto optimal sets and the regularization of the Pareto optimal set are described in our paper. These methods are applied to solving the multicriteria optimization problems of large- scale systems. For example, they were applied in an agricultural engineering to a harvester for harvesting design.


Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


2011 ◽  
Vol 8 (1) ◽  
pp. 65-73
Author(s):  
E.Sh. Nasibullaeva ◽  
I.Sh. Akhatov

The mathematical model of a bubble cluster subjected to an acoustic field is investigated. In this model the cluster is considered as a large drop containing a liquid and a set of microbubbles. Areas of applicability of the mathematical model of the bubble cluster in the parameter space (α, R_0) are constructed, where α is the bubble concentration in the cluster; R_0 is the initial radius of the cluster.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2005 ◽  
Vol 297-300 ◽  
pp. 1882-1887
Author(s):  
Tae Hee Lee ◽  
Jung Hun Yoo

In practical design applications, most design variables such as thickness, diameter and material properties are not deterministic but stochastic numbers that can be represented by their mean values with variances because of various uncertainties. When the uncertainties related with design variables and manufacturing process are considered in engineering design, the specified reliability of the design can be achieved by using the so-called reliability based design optimization. Reliability based design optimization takes into account the uncertainties in the design in order to meet the user requirement of the specified reliability while seeking optimal solution. Reliability based design optimization of a real system becomes now an emerging technique to achieve reliability, robustness and safety of the design. It is, however, well known that reliability based design optimization can often have so multiple local optima that it cannot converge into the specified reliability. To overcome this difficulty, barrier function approach in reliability based design optimization is proposed in this research and feasible solution with specified reliability index is always provided if a feasible solution is available. To illustrate the proposed formulation, reliability based design optimization of a bracket design is performed. Advanced mean value method and first order reliability method are employed for reliability analysis and their optimization results are compared with reliability index approach based on the accuracy and efficiency.


Sign in / Sign up

Export Citation Format

Share Document