scholarly journals Wastewaters of meat-processing enterprise: assessment of genotoxic potential

2018 ◽  
Vol 245 ◽  
pp. 18002 ◽  
Author(s):  
Olga Ivanchenko ◽  
Rustem Khabibullin ◽  
Rahat Bhat

Environmental pollution and ecosystem dysfunction are one of the most important problems of the today’s world. Assessment of toxigenic properties of effluents from the meat-processing enterprise was carried out using the short-term microorganisms biotests in vitro. Both native waste water and its ether and water fractions were investigated. The probes’ sterilization was carried out by filtration through the sterile membrane filters Synpor with pores diameter of 0.45 m. Mutagenic activity of wastewaters was determined using the Salmonella/microsomes plate with in vitro metabolic activation and without metabolic activation (Ames test). As a metobolic activation the rat liver microsomes were used. Studying of the DNA-damaging activity was carried out using the suspension method modification on the mutant Escherichia coli strains, in which the functioning of one reparation systems is suppressed: uvrA-, recAand рol A-. Native waste water doesn’t have an influence on the mutant strains recAand рol A-, its survivability degree is in the range 96-100%. However, DNA-damaging action was registered for the strain with the damaged excision repair (uvrA-), survivability of which was 81.31%. Ames test of wastewater and its fractions didn’t reveal any mutagenic activity. The tests used in this work allow one to comprehensively estimate the genetic danger of the enterprise wastewaters within a short time and are recommended as test-systems for monitoring the ecological safety of wastewaters.

2010 ◽  
Vol 1 (1) ◽  
pp. 55 ◽  
Author(s):  
Akram Hassan ◽  
S.A Omar ◽  
Zaihan Ariffin

Silver amalgam/Silverfil Argentum® is a ‘Malaysian made amalgam’ has already been approved to be free from cytotoxicity, however its genotoxic effect has not been explored yet as biocompatible material. The objective of this study was to identify the genotoxic characteristic of silver amalgam by using Bacterial Reverse Mutation Assay (Ames test). This was a descriptive experimental study involving one strain of mutated Salmonella. The test material was evaluated in one mutated strain of Salmonella typhimurium TA1538 with and without an external metabolic activation system (S9 Mix). The bacteria were incubated for 48 hours at 37±0.5ºC before the colony growth or revertant colonies were counted. Data obtained were analyzed by using non-statistical method. The investigation of the genotoxic reaction on the test material revealed thatthe number of revertant colonies in both strains with and without S9 Mix were less than twice of the negative control even in the presence of high silver amalgam concentrations (5.0μg/ml). This study demonstratedthat the test material did not exhibit any mutagenic activity under the chosen conditions. Thus, silver amalgam could be considered to have no genotoxicity effect.


2008 ◽  
Vol 6 (4) ◽  
pp. 29-33 ◽  
Author(s):  
Nazira S Karamova ◽  
Alexandra P Denisova ◽  
Zenon Stasevski

The mutagenic activity of five pesticides actara, sencor, mospilan, pencozeb, fastac widely used for treatment of potato plant lands in Tatarstan was tested in the Ames test. The non toxic concentrations of the pesticides determined in preliminary cytotoxicty test were used in the Ames assay. Pesticides actara, mospilan, pencozeb, fastac did not show mutagenic effect in Salmonella typhimurium TA 100 without rat liver S9 fraction. The weak mutagenic effect of herbicide sencor was established at concentration 1 ug/plate. Metabolic activation in vitro using rat liver S9 fraction decreased the mutagenic activity of sencor and did not alter the mutagenicity rate of the pesticides actara, mospilan, pencozeb and fastac.


1991 ◽  
Vol 57 (3) ◽  
pp. 261-269 ◽  
Author(s):  
S. Lecoq ◽  
M. NíShé ◽  
P.L. Grover ◽  
K.L. Platt ◽  
F. Oesch ◽  
...  

1996 ◽  
Vol 15 (7) ◽  
pp. 577-582 ◽  
Author(s):  
Katariina Castrén ◽  
Päivi Pienimäki ◽  
Pentti Arvela ◽  
Kirsi Vähäkangas

DNA-binding of carbamazepine (CBZ) and oxcarbazepine (OCBZ) catalysed by non-induced, phenobarbital-induced or methylcholanthrene-induced rat liver microsomes in vitro was studied. 14C-CBZ 200 nmol incubated with DNA, liver microsomes and cofactors led to the formation of a significant amount of CBZ-epoxide, which has been suspected as the cause of teratogenesis and other side- effects of CBZ,1,2 but has not been reactive in any test systems for genotoxicity, including the Ames test.3 No enzyme-dependent DNA-binding of CBZ was found. Using the same conditions, however, OCBZ was bound to DNA. This binding was dependent on the presence of NADPH. 10-hydroxy-10,11-dihydro-carbamazepine, which is known to be the major metabolite of OCBZ, and an unknown peak were demonstrated by HPLC. These results are the first indication of a higher level of covalent DNA binding of OCBZ than of CBZ. The nature of the unknown metabolite and the pathway leading to covalent binding remain to be studied.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 776
Author(s):  
Sin-Eun Kim ◽  
Seung-Bae Ji ◽  
Euihyeon Kim ◽  
Minseon Jeong ◽  
Jina Kim ◽  
...  

DN203368 ((E)-3-[1-(4-[4-isopropylpiperazine-1-yl]phenyl) 3-methyl-2-phenylbut-1-en-1-yl] phenol) is a 4-hydroxy tamoxifen analog that is a dual inverse agonist of estrogen-related receptor β/γ (ERRβ/γ). ERRγ is an orphan nuclear receptor that plays an important role in development and homeostasis and holds potential as a novel therapeutic target in metabolic diseases such as diabetes mellitus, obesity, and cancer. ERRβ is also one of the orphan nuclear receptors critical for many biological processes, such as development. We investigated the in vitro metabolism of DN203368 by conventional and metabolomic approaches using high-resolution mass spectrometry. The compound (100 μM) was incubated with rat and human liver microsomes in the presence of NADPH. In the metabolomic approach, the m/z value and retention time information obtained from the sample and heat-inactivated control group were statistically evaluated using principal component analysis and orthogonal partial least-squares discriminant analysis. Significant features responsible for group separation were then identified using tandem mass spectra. Seven metabolites of DN203368 were identified in rat liver microsomes and the metabolic pathways include hydroxylation (M1-3), N-oxidation (M4), N-deisopropylation (M5), N,N-dealkylation (M6), and oxidation and dehydrogenation (M7). Only five metabolites (M2, M3, and M5-M7) were detected in human liver microsomes. In the conventional approach using extracted ion monitoring for values of mass increase or decrease by known metabolic reactions, only five metabolites (M1-M5) were found in rat liver microsomes, whereas three metabolites (M2, M3, and M5) were found in human liver microsomes. This study revealed that nontargeted metabolomics combined with high-resolution mass spectrometry and multivariate analysis could be a more efficient tool for drug metabolite identification than the conventional approach. These results might also be useful for understanding the pharmacokinetics and metabolism of DN203368 in animals and humans.


Fitoterapia ◽  
2011 ◽  
Vol 82 (8) ◽  
pp. 1222-1230 ◽  
Author(s):  
Wei Zhou ◽  
Liu-qing Di ◽  
Jin-jun Shan ◽  
Xiao-lin Bi ◽  
Le-tian Chen ◽  
...  

2008 ◽  
Vol 46 (5) ◽  
pp. 419-423 ◽  
Author(s):  
R. Zhang ◽  
C.-h. Liu ◽  
T.-l. Huang ◽  
N.-s. Wang ◽  
S.-q. Mi

Author(s):  
Xiangli Zhang ◽  
Qin Shen ◽  
Yi Wang ◽  
Leilei Zhou ◽  
Qi Weng ◽  
...  

Background: E2 (Camptothecin - 20 (S) - O- glycine - deoxycholic acid), and G2 (Camptothecin - 20 (S) - O - acetate - deoxycholic acid) are two novel bile acid-derived camptothecin analogues by introducing deoxycholic acid in 20-position of CPT(camptothecin) with greater anticancer activity and lower systematic toxicity in vivo. Objective: We aimed to investigate the metabolism of E2 and G2 by Rat Liver Microsomes (RLM). Methods: Phase Ⅰ and Phase Ⅱ metabolism of E2 and G2 in rat liver microsomes were performed respectively, and the mixed incubation of phase I and phase Ⅱ metabolism of E2 and G2 was also processed. Metabolites were identified by liquid chromatographic/mass spectrometry. Results: The results showed that phase I metabolism was the major biotransformation route for both E2 and G2. The isoenzyme involved in their metabolism had some difference. The intrinsic clearance of G2 was 174.7mL/min. mg protein, more than three times of that of E2 (51.3 mL/min . mg protein), indicating a greater metabolism stability of E2. 10 metabolites of E2 and 14 metabolites of G2 were detected, including phase I metabolites (mainly via hydroxylations and hydrolysis) and their further glucuronidation products. Conclusion: These findings suggested that E2 and G2 have similar biotransformation pathways except some difference in the hydrolysis ability of the ester bond and amino bond from the parent compounds, which may result in the diversity of their metabolism stability and responsible CYPs(Cytochrome P450 proteins).


Sign in / Sign up

Export Citation Format

Share Document