scholarly journals The Effect of Using Palm Kernel Shell Ash and Rice Husk Ash on Geopolymer Concrete

2018 ◽  
Vol 251 ◽  
pp. 01044 ◽  
Author(s):  
Harianto Hardjasaputra ◽  
Ivan Fernando ◽  
Judith Indrajaya ◽  
Melanie Cornelia ◽  
Rachmansyah

As already known, cement production is one of the biggest contributors to CO2 emissions due to combustion processes that require high temperatures. This can trigger global warming so the solutions to reduce or even eliminate the use of cement continue to be developed. Geopolymer concrete is one solution to reduce the use of cement in the construction industry in the world. This study has the main objective to examine the effect of the use of palm kernel shell and ash rice husk ash in geopolymer concrete mixes on the strength of geopolymer concrete then compared with the use of palm kernel shell ash and rice husk ash on Portland cement concrete. In this study concluded that increasing the strength of geopolymer concrete with the use of palm kernel shell ash and rice husk ash tends to be insignificant when compared to the increase in strength in Portland cement concrete. The changes in the concentration of NaOH solution is more effective to increase the strength of geopolymer concrete.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Yong Kim ◽  
Byung-Jae Lee ◽  
Velu Saraswathy ◽  
Seung-Jun Kwon

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.


Author(s):  
K. O. Oriola

The evaluation of agro-industrial by-products as alternative construction materials is becoming more significant as the demand for environmentally friendly construction materials increases. In this study, the workability and compressive strength of concrete produced by combining Palm Kernel Shell (PKS) and Rice Husk Ash (RHA) was investigated. Concrete mixes using a fixed content of 15% RHA as replacement for cement and 20, 40, 60, 80 and 100% PKS as replacement for crushed granite by volume with the mix ratios of 1:1½:3, 1:2:4 and 1:3:6 were produced. The water-to-cement ratios of 0.5, 0.6 and 0.7 were used for the respective mix ratios. Concrete without PKS and RHA served as control mix. The fresh concrete workability was evaluated through slump test. The concrete hardened properties determined were the density and compressive strength. The results indicated that the workability and density of PKSC were lower than control concrete, and they decreased as the PKS content in each mix ratio was increased. The compressive strength of concrete at 90 days decreased from 27.8-13.1 N/mm2, 23.8-8.9 N/mm2and 20.6-7.6 for 1:1½:3, 1:2:4 and 1:3:6, respectively as the substitution level of PKS increased from 0-100%. However, the compressive strength of concrete increased with curing age and the gain in strength of concrete containing RHA and PKSC were higher than the control at the later age. The concrete containing 15% RHA with up to 40% PKS for 1:1½:3 and 20% PKS for 1:2:4 mix ratios satisfied the minimum strength requirements for structural lightweight aggregate concrete (SLWAC) stipulated by the relevant standards. It can be concluded that the addition of 15% RHA is effective in improving the strength properties of PKSC for eco-friendly SLWAC production..


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ganesan Lavanya ◽  
Josephraj Jegan

This study presents an investigation into the durability of geopolymer concrete prepared using high calcium fly ash along with alkaline activators when exposed to 2% solution of sulfuric acid and 5% magnesium sulphate for up to 45 days. The durability was also assessed by measuring water absorption and sorptivity. Ordinary Portland cement concrete was also prepared as control concrete. The grades chosen for the investigation were M20, M40, and M60. The alkaline solution used for present study is the combination of sodium silicate and sodium hydroxide solution with the ratio of 2.50. The molarity of sodium hydroxide was fixed as 12. The test specimens were150×150×150 mm cubes,100×200 mm cylinders, and100×50 mm discs cured at ambient temperature. Surface deterioration, density, and strength over a period of 14, 28, and 45 days were observed. The results of geopolymer and ordinary Portland cement concrete were compared and discussed. After 45 days of exposure to the magnesium sulfate solution, the reduction in strength was up to 12% for geopolymer concrete and up to 25% for ordinary Portland cement concrete. After the same period of exposure to the sulphuric acid solution, the compressive strength decrease was up to 20% for geopolymer concrete and up to 28% for ordinary Portland cement concrete.


2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Nadezhda Eroshkina ◽  
Mikhail Chamurliev ◽  
Mark Korovkin

The effect of mineral additives such as crushed ash and individual building demolition waste on the corrosion resistance of geopolymer concrete based on screening the crushed granite and blast furnace slag in an environment of sulfuric acid solutions was studied. The corrosion resistance of concrete was evaluated by the kinetics of reducing the mass and strength of samples in sulfuric acid solutions with a concentration of 2,5 and 5 % for 10 days. It was shown that replacing 50 % of granite powder with ground crushed bricks or ash significantly increases the corrosion resistance of geopolymer materials. It was established that due to the formation of poorly soluble products of the interaction of sulfuric acid and concrete in the pores of a geopolymer stone, an interface is formed between the undestructed material and the zone subjected to destructive processes, which impedes the penetration of the corrosive medium into the material. The study also conducted comparative studies of the corrosion resistance of Portland cement concrete with various water-cement ratios. The research results showed that under the influence of sulfuric acid in Portland cement concrete this border does not form and a rapid loss of mass and strength occurs in the samples. The established feature of the process of destruction of geopolymer concrete in a solution of sulfuric acid is the reason for its higher resistance in comparison with cement concrete.


Sign in / Sign up

Export Citation Format

Share Document