scholarly journals Continuous glucose monitoring: review of promising technologies

2019 ◽  
Vol 252 ◽  
pp. 02012
Author(s):  
Monika Klimek ◽  
Tytus Tulwin

Despite the progress we have made in the management of diabetes it is still incurable and aggravating disease affecting all domains of quality of life. Uncontrolled diabetes associated with hyperglycemia leads to serious microvascular and macrovascular long-term complications. The proper long-term glycemic control is a key strategy for preventing the development or slowing the progression of diabetes complications, thus there is a crucial role of new technologies in the diabetes care. New technologies in diabetology are developing dynamically in recent years and therefore this is a topical issue. In this paper we describe current and developing continuous glucose monitoring technologies and their usefulness in promoting optimal glycemic control, influence on personalized diabetes managements and the functioning of patients. Moreover we review knowledge about flash glucose monitoring and close-loop system. This review examines studies published before 31st August 2018.

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 966-P
Author(s):  
ATSUSHI FUJIYA ◽  
TOSHIKI KIYOSE ◽  
TAIGA SHIBATA ◽  
HIROSHI SOBAJIMA

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 878-P
Author(s):  
KATHERINE TWEDEN ◽  
SAMANWOY GHOSH-DASTIDAR ◽  
ANDREW D. DEHENNIS ◽  
FRANCINE KAUFMAN

2011 ◽  
Vol 5 (6) ◽  
pp. 1472-1479 ◽  
Author(s):  
Jenny Anderson ◽  
Stig Attvall ◽  
Lennart Sternemalm ◽  
Aldina Pivodic ◽  
Martin Fahlén ◽  
...  

2018 ◽  
Vol 15 (3) ◽  
pp. 175-184 ◽  
Author(s):  
Ramzi A Ajjan ◽  
Michael H Cummings ◽  
Peter Jennings ◽  
Lalantha Leelarathna ◽  
Gerry Rayman ◽  
...  

Continuous glucose monitoring and flash glucose monitoring technologies measure glucose in the interstitial fluid and are increasingly used in diabetes care. Their accuracy, key to effective glycaemic management, is usually measured using the mean absolute relative difference of the interstitial fluid sensor compared to reference blood glucose readings. However, mean absolute relative difference is not standardised and has limitations. This review aims to provide a consensus opinion on assessing accuracy of interstitial fluid glucose sensing technologies. Mean absolute relative difference is influenced by glucose distribution and rate of change; hence, we express caution on the reliability of comparing mean absolute relative difference data from different study systems and conditions. We also review the pitfalls associated with mean absolute relative difference at different glucose levels and explore additional ways of assessing accuracy of interstitial fluid devices. Importantly, much data indicate that current practice of assessing accuracy of different systems based on individualised mean absolute relative difference results has limitations, which have potential clinical implications. Healthcare professionals must understand the factors that influence mean absolute relative difference as a metric for accuracy and look at additional assessments, such as consensus error grid analysis, when evaluating continuous glucose monitoring and flash glucose monitoring systems in diabetes care. This in turn will ensure that management decisions based on interstitial fluid sensor data are both effective and safe.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 992 ◽  
Author(s):  
Giulia Mancini ◽  
Maria Berioli ◽  
Elisa Santi ◽  
Francesco Rogari ◽  
Giada Toni ◽  
...  

In people with type 1 diabetes mellitus (T1DM), obtaining good glycemic control is essential to reduce the risk of acute and chronic complications. Frequent glucose monitoring allows the adjustment of insulin therapy to improve metabolic control with near-normal blood glucose concentrations. The recent development of innovative technological devices for the management of T1DM provides new opportunities for patients and health care professionals to improve glycemic control and quality of life. Currently, in addition to traditional self-monitoring of blood glucose (SMBG) through a glucometer, there are new strategies to measure glucose levels, including the detection of interstitial glucose through Continuous Glucose Monitoring (iCGM) or Flash Glucose Monitoring (FGM). In this review, we analyze current evidence on the efficacy and safety of FGM, with a special focus on T1DM. FGM is an effective tool with great potential for the management of T1DM both in the pediatric and adult population that can help patients to improve metabolic control and quality of life. Although FGM might not be included in the development of an artificial pancreas and some models of iCGM are more accurate than FGM and preferable in some specific situations, FGM represents a cheaper and valid alternative for selected patients. In fact, FGM provides significantly more data than the intermittent results obtained by SMBG, which may not capture intervals of extreme variability or nocturnal events. With the help of a log related to insulin doses, meal intake, physical activity and stress factors, people can achieve the full benefits of FGM and work together with health care professionals to act upon the information provided by the sensor. The graphs and trends available with FGM better allow an understanding of how different factors (e.g., physical activity, diet) impact glycemic control, consequently motivating patients to take charge of their health.


2018 ◽  
Vol 103 (3) ◽  
pp. 1224-1232 ◽  
Author(s):  
Sara Charleer ◽  
Chantal Mathieu ◽  
Frank Nobels ◽  
Christophe De Block ◽  
Regis P Radermecker ◽  
...  

2011 ◽  
Vol 13 (3) ◽  
pp. 351-358 ◽  
Author(s):  
Dongyuan Xing ◽  
Craig Kollman ◽  
Roy W. Beck ◽  
William V. Tamborlane ◽  
Lori Laffel ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. e002124
Author(s):  
Annel Lameijer ◽  
Marion J Fokkert ◽  
Mireille A Edens ◽  
Reinold O B Gans ◽  
Henk J G Bilo ◽  
...  

IntroductionThe FreeStyle Libre (FSL) is a flash glucose monitoring (FGM) system. The Flash Monitor Register in the Netherlands (FLARE-NL-4) study previously demonstrated the positive effects of FSL-FGM use during 1 year on glycemic control, quality of life and disease burden among persons with diabetes mellitus (DM). The present follow-up study assesses the effects of FSL-FGM after 2 years.Research design and methodsPatients included in the FLARE-NL-4 study who continued FSL-FGM during the 1-year study period were invited to participate (n=687). Data were collected using questionnaires (the 12-Item Short Form Health Survey version 2 (SF-12v2) and the EuroQol 5-Dimension 3-Level (EQ-5D-3L) for quality of life), including self-reported hemoglobin A1c (HbA1c).ResultsA total of 342 patients agreed to participate: mean age 48.0 (±15.6) years, 52% men and 79.5% with type 1 DM. HbA1c decreased from 60.7 (95% CI 59.1 to 62.3) mmol/mol before use of FSL-FGM to 57.3 (95% CI 55.8 to 58.8) mmol/mol after 1 year and 57.8 (95% CI 56.0 to 59.5) mmol/mol after 2 years. At the end of the 2-year follow-up period, 260 (76%) persons were still using the FSL-FGM and 82 (24%) had stopped. The main reason for stopping FSL-FGM was financial constraints (55%). Concerning the whole 2-year period, there was a significant decrease in HbA1c among persons who continued use of FSL-FGM (−3.5 mmol/mol, 95% CI −6.4 to –0.7), while HbA1c was unaltered compared with baseline among persons who stopped FSL-FGM (−2.4 mmol/mol, 95% CI −7.5 to 2.7): difference between groups 2.2 (95% CI −1.3 to 5.8) mmol/mol. After 2 years, persons who continued use of FSL-FGM had higher SF-12 mental component score and higher EQ-5D Dutch tariff score and felt less often anxious or depressed compared with persons who discontinued FSL-FGM.ConclusionsAlthough the considerable number of non-responders limits generalizability, this study suggests that persons who continue to use FSL-FGM for 2 years may experience sustained improvement in glycemic control and quality of life.


Sign in / Sign up

Export Citation Format

Share Document