scholarly journals Transverse load carrying capacity of steel triangularly corrugated web beam with opening

2019 ◽  
Vol 279 ◽  
pp. 02004
Author(s):  
Sergey Kudryavtsev

The paper presents a study of the transverse bending behaviour of corrugated web beam with and without web openings. Examined steel beams consist of two flanges and a thin triangularly corrugated web, connected by automatic welding. In the literature, the influence of web opening over transverse load carrying capacity was dealt with mostly for steel beams with plane, sinusoidal and trapezoidal corrugated webs, so researches of beams with triangularly corrugated webs were found out to be very limited. A parametric study is carried out for various web slenderness and corrugation densities. A general-purpose finite element analysis software ABAQUS was used. The corrugation densities adopted in this study represent practical geometries, which are commonly used for such structures in building practice. Models with and without web openings were analysed and examined in terms of load-deformation characteristics and ultimate web shear resistance. Recommendations are given for the practical design of corrugated web beams weakened by circular openings.

2013 ◽  
Vol 594-595 ◽  
pp. 516-520 ◽  
Author(s):  
Bashar S. Mohammed ◽  
Hock Tian Cheng

The urgent need for a web opening in the pretensioned inverted T-beams after the construction for essential services causes local cracking around the opening which leads to decrease in stiffness and load carrying capacity. Therefore, strengthening the vicinity of the opening is essential to restore the loss in load carrying capacity of the beam using GFRP. To study the deflection of pretentioned inverted T-beam with web opening, three-dimensional finite element beam models are developed before and after GFRP strengthening using the finite element analysis (FEA). Modeling methodology and nonlinear analysis approach in ANSYS are presented. The results obtained from the FEA beam model are compared with the test data in terms of load-deflection curve. It has been concluded that FEA models are good representations for GFRP strengthened beams with web openings in terms of the number of elements, structural details, and, especially, reasonably accurate results in general.


Author(s):  
Atsushi Yamaguchi

Boilers and pressure vessels are heavily used in numerous industrial plants, and damaged equipment in the plants is often detected by visual inspection or non-destructive inspection techniques. The most common type of damage is wall thinning due to corrosion under insulation (CUI) or flow-accelerated corrosion (FAC), or both. Any damaged equipment must be repaired or replaced as necessary as soon as possible after damage has been detected. Moreover, optimization of the time required to replace damaged equipment by evaluating the load carrying capacity of boilers and pressure vessels with wall thinning is expected by engineers in the chemical industrial field. In the present study, finite element analysis (FEA) is used to evaluate the load carrying capacity in T-joints with wall thinning. Burst pressure is a measure of the load carrying capacity in T-joints with wall thinning. The T-joints subjected to burst testing are carbon steel tubes for pressure service STPG370 (JIS G3454). The burst pressure is investigated by comparing the results of burst testing with the results of FEA. Moreover, the maximum allowable working pressure (MAWP) of T-joints with wall thinning is calculated, and the safety margin for the burst pressure is investigated. The burst pressure in T-joints with wall thinning can be estimated the safety side using FEA regardless of whether the model is a shell model or a solid model. The MAWP is 2.6 MPa and has a safety margin 7.5 for burst pressure. Moreover, the MAWP is assessed the as a safety side, although the evaluation is too conservative for the burst pressure.


2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Nahushananda Chakravarthy ◽  
Sivakumar Naganathan ◽  
Jonathan Tan Hsien Aun ◽  
Sreedhar Kalavagunta ◽  
Kamal Nasharuddin Mustapha ◽  
...  

Cold formed steel differ from hot rolled steel by its lesser thickness and weight. The cold formed steel applicable in roof purlin, pipe racks and wall panels etc. Due its lesser wall thickness the cold formed steel member subjected to buckling. The enhancement of load carrying capacity of the cold formed steel member can be achieved by external strengthening of CFRP. In this study cold formed channel members connected back to back to form I shaped cross section using screws. These built up beam members were 300mm, 400mm and 500mm in length with 100mm screw spacing and edge distance of 50mm were chosen for testing. CFRP fabric cut according to length, width of built up beams and wrapped outer surface of beam using epoxy resin. Experiments were carried out in two sets firstly plain built up beams and secondly CFRP wrapped beams. The test results shows that increased load carrying capacity and reduction in deflection due to CFRP strengthening. Experimental results were compared with AISI standards which are in good agreement. Experimental results shows that CFRP strengthening is economic and reliable.


1993 ◽  
Vol 20 (4) ◽  
pp. 564-573 ◽  
Author(s):  
R. O. Foschi ◽  
F. Z. Yao

This paper presents a reliability analysis of wood I-joists for both strength and serviceability limit states. Results are obtained from a finite element analysis coupled with a first-order reliability method. For the strength limit state of load-carrying capacity, multiple failure modes are considered, each involving the interaction of several random variables. Good agreement is achieved between the test results and the theoretical prediction of variability in load-carrying capacity. Finally, a procedure is given to obtain load-sharing adjustment factors applicable to repetitive member systems such as floors and flat roofs. Key words: reliability, limit state design, wood composites, I-joist, structural analysis.


Author(s):  
Te Pei ◽  
Tong Qiu ◽  
Jeffrey A. Laman

Abstract The present study comprehensively evaluates the improvement in lateral load-carrying capacity of steel pipe piles by adding steel plates (fins) at grade level. This configuration of steel fin pile foundations (SFPFs) is effective for applications where high lateral loads are encountered and rapid pile installation is advantageous. An integrated finite element analysis (FEA) was conducted. The FEA utilized an Abaqus model, first developed to account for the nonlinear soil-pile interaction, and then calibrated and validated against well-documented experimental and filed tests in the literature. The validated FEA model was subsequently used to conduct a parametric study to understand the effect of fin geometry on the load transfer mechanism and the response of SFPFs subjected to lateral loading at pile head. The behavior of SFPFs at different displacement levels and load levels was studied. The effect of the relative density of soil on the performance of SFPFs was also investigated. Based on the numerical simulation results, the optimal fin width for maximum improvement in lateral load-carrying capacity was suggested and the underlining mechanism affecting the efficiency of fins was explained.


2011 ◽  
Vol 71-78 ◽  
pp. 898-902
Author(s):  
Yuan Qing Wang ◽  
Jong Su Sung ◽  
Yong Jiu Shi

Composite slab with steel sheeting deck is considered a continuous slab when it is under a constructional situation. Nevertheless, many recent researches are focused on simply supported slab. In order to determine the load carrying capacity regarding various rebar ratio on negative moment region, a numerical analysis was carried out by using finite element analysis. The result of analysis shows that the reinforced steel rebar increases load carrying capacity. Moreover, it has shown that the reinforced length of steel rebar also affect the load carrying capacity.


2011 ◽  
Vol 94-96 ◽  
pp. 342-349
Author(s):  
Wen Long Shi ◽  
Xuan Liu

The H-beam with corrugated webs is a new type of H-beam, whose webs are produced by substituting corrugated webs for flat webs. In this paper, analysis was conducted to study main design principles for H-beam with corrugated webs used in a project, including component design and joints design. Compared with H-beams, the products have superior load-carrying capacity and more favorable economic advantages.


2018 ◽  
Vol 21 (16) ◽  
pp. 2534-2552 ◽  
Author(s):  
Pinelopi Kyvelou ◽  
Chi Hui ◽  
Leroy Gardner ◽  
David A Nethercot

Cold-formed steel purlin systems with overlapped or sleeved connections are alternatives to continuous two-span systems and exhibit different degrees of continuity. Both connection types are highly favourable in practice since they are both strategically placed over an interior support to provide additional moment resistance and rotational capacity where the corresponding demands are at their largest, thus improving the overall structural efficiency. Until recently, full-scale testing has been the most common way of investigating the structural behaviour of such systems. In this study, numerical modelling, capable of capturing the complex contact interactions and instability phenomena, is employed. The developed finite element models are first validated against data from physical tests on cold-formed steel beams featuring sleeved and overlapped connections that have been previously reported in the literature. Following their validation, the models are employed for parametric studies, based on which the structural behaviour of the examined systems is explored, while the applicability of conventional plastic design as well as of a previously proposed design approach is investigated. Finally, the efficiency of these systems in terms of load-carrying capacity is compared with their equivalent continuous two-span systems.


Author(s):  
Yogesh K S

Pile foundation is one of the effective forms of deep foundation. This is to be used where the load has to be transferred to deeper layers of soil and it can with stand uplift forces in foundations in expansive soil and also in case of floating foundations. The finite element method is one of the most versatile and comprehensive numerical technique which can be used for analysis of structures or solids of complex shapes and complicated boundary conditions. There are different variables which influence the load carrying capacity of pile foundation. But only some of those have significant influence on load carrying capacity. Here those variables are considered and the variation of load carrying capacity with the change in value of those variables is observed. Those variables are pile length and pile diameter, analysis of pile foundation was carried out to determine the ultimate load carrying capacity of pile for different lengths and diameters in cohesive soil, the corresponding settlement was also determined.


Sign in / Sign up

Export Citation Format

Share Document