scholarly journals Numerical modeling of flow around a heated cylinder with a rough surface

2020 ◽  
Vol 313 ◽  
pp. 00046
Author(s):  
Lenka Lausová ◽  
Vladimíra Michalcová ◽  
Ivan Kološ

The article deals with the numerical solution of the load of a heated chimney from wind effects. The paper examines flow around a heated cylinder with the rough surface in high Reynolds number regime. The results of drag coefficient, pressure coefficient and other related flow properties are compared with the calculations of the flow around the unheated cylinder.

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 28
Author(s):  
John Hart ◽  
Jonathan Potts

This paper presents the first scale resolving computational fluid dynamic (CFD) investigation of a geometrically realistic feather shuttlecock with rotation at a high Reynolds number. Rotation was found to reduce the drag coefficient of the shuttlecock. However, the drag coefficient is shown to be independent of the Reynolds number for both rotating and statically fixed shuttlecocks. Particular attention is given to the influence of rotation on the development of flow structures. Rotation is shown to have a clear influence on the formation of flow structures particularly from the feather vanes, and aft of the shuttlecock base. This further raises concerns regarding wind tunnel studies that use traditional experimental sting mounts; typically inserted into this aft region, they have potential to compromise both flow structure and resultant drag forces. As CFD does not necessitate use of a sting with proper application, it has great potential for a detailed study and analysis of shuttlecocks.


1993 ◽  
Vol 115 (4) ◽  
pp. 638-645 ◽  
Author(s):  
Hsiao C. Kao

The problem of turbulent flows in two-inlet channels has been studied numerically by solving the Reynolds-averaged Navier-Stokes equations with the k–ε model in a mapped domain. Both the high Reynolds number and the low Reynolds number form were used for this purpose. In general, the former predicts a weaker and smaller recirculation zone than the latter. Comparisons with experimental data, when applicable, were also made. The bulk of the present computations used, however, the high Reynolds number form to correlate different geometries and inflow conditions with the flow properties after turning.


Author(s):  
Pedram Hanafizadeh ◽  
S. Alireza Hojati ◽  
Hamid Eslami ◽  
Navid Latifian

In many industrial applications, some measurement instruments must be placed in a pipe in which fluid flows. Two phase cross flows around a body have seldom been studied until now and considering these flows can play a significant role in long-term reliability and safety of industrial systems. In this paper drag coefficient, pressure coefficient and void fraction around triangular bodies with different leading edge angles were considered. Also effect of Reynolds number and inlet void fraction on drag coefficient and pressure coefficient has been investigated and flow treatment behind the triangular obstacle has been examined. To achieve this aim, main equations of flow have been developed for investigation of drag coefficient in air-water two phase. Our numerical analyses were performed by a designed and written CFD package which is based on Eulerian-Eulerian approach. Geometries, which have been studied in this article, are triangle, with different leading edge angle. Other parameters such as two phase Reynolds number, free stream void fraction and bubble size were considered, too. Drag coefficient is closely relates to the turbulence and the bubble motion. Since these mechanisms vary over time, we used final value of drag coefficient after convergence. The results showed that drag coefficient is strongly depended of Reynolds number. In this simulation it can be seen that both the drag coefficient and pressure drag coefficient decrease whit increase in two phase Reynolds number and increase with decrease in inlet void fraction.


1961 ◽  
Vol 10 (3) ◽  
pp. 345-356 ◽  
Author(s):  
Anatol Roshko

Measurements on a large circular cylinder in a pressurized wind tunnel at Reynolds numbers from 106 to 107 reveal a high Reynolds number transition in which the drag coefficient increases from its low supercritical value to a value 0.7 at R = 3.5 × 106 and then becomes constant. Also, for R > 3.5 × 106, definite vortex shedding occurs, with Strouhal number 0.27.


Sign in / Sign up

Export Citation Format

Share Document