scholarly journals Data acquisition system based on transducers with Modbus communication

2021 ◽  
Vol 342 ◽  
pp. 05007
Author(s):  
Nicolae Pătrăşcoiu ◽  
Cosmin Rus ◽  
Cecilia Roşulescu ◽  
Nicoleta Negru

In this paper we propose an application written in LabVIEW through which a number of transducers or sensors are controlled so that the data from them are taken according to a certain algorithm and also this application realize the data processing. Control consists in selection for each of these transducers, their inputs selection and retrieves information from them. The physical connection between used transducers and master is made through RS-485 bus and the transmission protocol used is Modbus RTU.

2012 ◽  
Vol 546-547 ◽  
pp. 1393-1397
Author(s):  
Zhi Wen Xiong ◽  
Chen Guang Xu ◽  
Hong Zeng

Data acquisition begins with the physical phenomenon or physical property to be measured. Examples of this include temperature, gas pressure, and light intensity, and force, fluid flow, regardless of the type of physical property to be measured. Physical property converted into digital, and then by the computer for storage, processing, display or printing process, the corresponding system is called data acquisition system. With the rapid development of computer technology, data acquisition systems quickly gained popularity. A variety of products based on digital technology have been created. Digital System spread quickly; it’s mainly the following two advantages: the first is the digital processing flexible and convenient; the second is a digital system is very reliable. The main idea of Reconfigurable computing technology [1] is using the FPGA [2][3] allows the system has a dynamically configurable capacity, suitable for harsh environment applications, improve the speed of data processing. By the use of dynamic reconfigurable FPGA devices can be realized on the hardware logic function modification, application of reconfigurable computing technology can improve the speed of data processing. Data acquisition system is widely applied in many fields, and often used the abominable working environment place. The reconfigurable computing technology, can greatly improve the data acquisition system reliability and safety. The paper introduces a kind of multi-channel data acquisition system based on USB bus and FPGA, the factors affecting the performance of system are discussed, and describes how to use reconfigurable computing technology to improve the efficiency of data acquisition system while reduce energy consumption. The system in this paper uses AD's AD9220, ALTERA's EP1C6-8 and IDT's IDT70V24, Cypress’s CY7C68013.


Author(s):  
F. Tsai ◽  
T.-S. Wu ◽  
I.-C. Lee ◽  
H. Chang ◽  
A. Y. S. Su

This paper presents a data acquisition system consisting of multiple RGB-D sensors and digital single-lens reflex (DSLR) cameras. A systematic data processing procedure for integrating these two kinds of devices to generate three-dimensional point clouds of indoor environments is also developed and described. In the developed system, DSLR cameras are used to bridge the Kinects and provide a more accurate ray intersection condition, which takes advantage of the higher resolution and image quality of the DSLR cameras. Structure from Motion (SFM) reconstruction is used to link and merge multiple Kinect point clouds and dense point clouds (from DSLR color images) to generate initial integrated point clouds. Then, bundle adjustment is used to resolve the exterior orientation (EO) of all images. Those exterior orientations are used as the initial values to combine these point clouds at each frame into the same coordinate system using Helmert (seven-parameter) transformation. Experimental results demonstrate that the design of the data acquisition system and the data processing procedure can generate dense and fully colored point clouds of indoor environments successfully even in featureless areas. The accuracy of the generated point clouds were evaluated by comparing the widths and heights of identified objects as well as coordinates of pre-set independent check points against in situ measurements. Based on the generated point clouds, complete and accurate three-dimensional models of indoor environments can be constructed effectively.


2004 ◽  
Vol 75 (10) ◽  
pp. 4261-4264 ◽  
Author(s):  
M. Ruiz ◽  
E. Barrera ◽  
S. López ◽  
D. Machón ◽  
J. Vega ◽  
...  

2000 ◽  
Vol 18 (9) ◽  
pp. 1231-1241 ◽  
Author(s):  
J. M. Holt ◽  
P. J. Erickson ◽  
A. M. Gorczyca ◽  
T. Grydeland

Abstract. The Millstone Hill Incoherent Scatter Data Acquisition System (MIDAS) is based on an abstract model of an incoherent scatter radar. This model is implemented in a hierarchical software system, which serves to isolate hardware and low-level software implementation details from higher levels of the system. Inherent in this is the idea that implementation details can easily be changed in response to technological advances. MIDAS is an evolutionary system, and the MIDAS hardware has, in fact, evolved while the basic software model has remained unchanged. From the earliest days of MIDAS, it was realized that some functions implemented in specialized hardware might eventually be implemented by software in a general-purpose computer. MIDAS-W is the realization of this concept. The core component of MIDAS-W is a Sun Microsystems UltraSparc 10 workstation equipped with an Ultrarad 1280 PCI bus analog to digital (A/D) converter board. In the current implementation, a 2.25 MHz intermediate frequency (IF) is bandpass sampled at 1 µs intervals and these samples are multicast over a high-speed Ethernet which serves as a raw data bus. A second workstation receives the samples, converts them to filtered, decimated, complex baseband samples and computes the lag-profile matrix of the decimated samples. Overall performance is approximately ten times better than the previous MIDAS system, which utilizes a custom digital filtering module and array processor based correlator. A major advantage of MIDAS-W is its flexibility. A portable, single-workstation data acquisition system can be implemented by moving the software receiver and correlator programs to the workstation with the A/D converter. When the data samples are multicast, additional data processing systems, for example for raw data recording, can be implemented simply by adding another workstation with suitable software to the high-speed network. Testing of new data processing software is also greatly simplified, because a workstation with the new software can be added to the network without impacting the production system. MIDAS-W has been operated in parallel with the existing MIDAS-1 system to verify that incoherent scatter measurements by the two systems agree. MIDAS-W has also been used in a high-bandwidth mode to collect data on the November, 1999, Leonid meteor shower.Key words: Electromagnetics (instruments and techniques; signal processing and adaptive antennas) – Ionosphere (instruments and techniques)


1965 ◽  
Vol 04 (04) ◽  
pp. 189-195 ◽  
Author(s):  
R. Koechlin

The principle of a new data acquisition system is given for the numerical analysis of a visualized analogue signal. The operator chooses the sequence of interest. A 1/4 inch magnetic tape loop repeats the sequence on an oscilloscope screen. With numerical knobs he can either obtain automatically the full series of coded samples within the limits of a chosen zone of interest, or pick up the point by point coordinates of the only sample or segment he expects to be pertinent. The selected samples are brightened on the screen. The data are immediately made available in printed numbers to the physician for the patient’s medical file, or on punched tape for further processing and for Telex transmission.


2019 ◽  
Vol 957 ◽  
pp. 239-246
Author(s):  
Tom Savu

A data acquisition system was developed for measuring standardised ship propeller’s parameters. The hardware consists of two linear and one rotary encoder, all sending the data to a counter/timer data acquisition board. The software is first aligning the different coordinates systems of the propeller and of the three encoders . Data processing is initially performed for compensating the effects of different encoders’ resolutions. There are then computed the blade profile’s length and the coordinates of the points belonging to the blades’ reference lines, together with the local pitch variations on each radius and blade, the mean pitch per blade and the mean pitch of the propeller. A discussion is made about choosing the most appropriate number of points where the local pitch is computed, thus providing useful data for estimating the best way for propeller’s overhauling.


Sign in / Sign up

Export Citation Format

Share Document